Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}3x+1< x-7\\1-2x>x+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x< -8\\3x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x< 0\end{matrix}\right.\) \(\Rightarrow x< -4\)
Vậy nghiệm của hệ là \(S=\left(-\infty;-4\right)\)
Đáp án: A
Tổng số học sinh giỏi là: 45 – 13 = 32
Số học sinh chỉ giỏi Văn là: 32 – 25 = 7
Số học sinh chỉ giỏi Toán là: 32 – 17 =15
Số học sinh giỏi cả hai môn là: 32 – 7 – 15 = 10.
Từ biểu đồ trên: Tổng số học sinh giỏi (Toán và Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi cả 3 môn ( Toán; Văn; Anh) = Số học sinh chỉ giỏi 2 trong 3 môn
=> Số học sinh giỏi cả 3 môn là: (8 + 5 + 7 - 11) : 3 = 3 học sinh
Từ đo, ta tìm được số hs chỉ giỏi 2 trong 3 môn ( xem hình)
b) Số học sinh chỉ giỏi Toán là: 15 - (4 + 3+ 5) = 3 HS
Số hs chỉ giỏi Văn là : 14 - (5 + 3 + 2)= 4 HS
Số hs chỉ giỏi tiếng Anh là: 12 - ( 4 + 3 + 2) = 3 HS
Cho mình cái biểu thức tổng số học sinh giỏi (Toán và Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi 2 môn = số hs chỉ giỏi 2 trong 3 môn với ạ
Gọi độ dài mỗi cạnh của tam giác lần lượt là x;y;z
Theo bài ra ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và x+y+z=72
theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{72}{12}=6\)
=> x=18
y=24
z=30
Bài 21:
Gọi độ dài 3 cạnh của tam giác đó là: a, b, c ( a, b, c > 0 )
Theo đề bài, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a + b + c = 72
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{72}{12}=6\)
Do đó:
\(\frac{a}{3}=6=>a=6\cdot3=18\)
\(\frac{b}{4}=6=>b=6\cdot4=24\)
\(\frac{c}{5}=6=>c=6\cdot5=30\)
Vậy độ dài 3 cạnh của tam giác đó theo thứ tự là: 18; 24; 30 ( cm ) thỏa mãn yêu cầu đề bài
Bài 22:
Gọi số học sinh 3 lớp 7A, 7B, 7C theo thứ tự là: a, b, c ( a, b, c thuộc N* )
Theo đề bài, ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\) và c - a = 16
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{16}{2}=8\)
Do đó:
\(\frac{a}{4}=8=>a=8\cdot4=32\)
\(\frac{b}{5}=8=>b=8\cdot5=40\)
\(\frac{c}{6}=8=>c=8\cdot6=48\)
Vậy số học sinh 3 lớp 7A, 7B, 7C theo thứ tự là: 32; 40; 48 ( học sinh ) thỏa mãn yêu cầu đề bài
Đk:\(y^2-2x-5y+6\ge0\)
Pt (1)\(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-y\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)
TH1: Thay x=1 vào pt (2) ta đc: \(3\sqrt{y^2-5y+4}=y+9\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+9\ge0\\9\left(x^2-5y+4\right)=y^2+18y+81\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y\ge-9\\8y^2-63y-45=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{63+3\sqrt{601}}{16}\\y=\dfrac{63-3\sqrt{601}}{16}\end{matrix}\right.\) (tm)
TH2: Thay y=x+2 vào pt (2) ta đc:
\(\left(x-1\right)^2+3\sqrt{\left(x+2\right)^2-2x-5\left(x+2\right)+6}=x+2+9\)
\(\Leftrightarrow x^2-3x-10+3\sqrt{x^2-3x}=0\)
Đặt \(t=\sqrt{x^2-3x}\left(t\ge0\right)\)
Pttt: \(t^2-10+3t=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow2=\sqrt{x^2-3x}\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=6\\y=1\end{matrix}\right.\) (tm)
Vậy \(\left(x;y\right)=\text{}\left\{\left(1;\dfrac{63+3\sqrt{601}}{16}\right);\left(1;\dfrac{63-3\sqrt{601}}{16}\right),\left(4;6\right),\left(-1;1\right)\right\}\)
Xét pt đầu:
\(\left(x^2+x-2\right)-y\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-y\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)
- Với \(x=1\) thay xuống pt dưới:
\(3\sqrt{y^2-5y+4}=y+9\) \(\left(y\ge-9\right)\)
\(\Leftrightarrow9\left(y^2-5y+4\right)=y^2+18y+81\)
\(\Leftrightarrow8y^2-63y-45=0\)
\(\Rightarrow y=\dfrac{63\pm3\sqrt{601}}{16}\) (thỏa mãn)
- Với \(y=x+2\) thay xuống pt dưới:
\(\left(x-1\right)^2+3\sqrt{x^2-3x}=x+11\) (ĐKXĐ: ....)
\(\Leftrightarrow x^2-3x+3\sqrt{x^2-3x}-10=0\)
Đặt \(\sqrt{x^2-3x}=t\ge0\)
\(\Rightarrow t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-3x}=2\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow...\)
https://www.facebook.com/profile.php?id=100009900727130
Acp đi ông tui tên thiện như á