Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1)/2015 + x/2014 + 1/503 - (x-3)/2013 - x/2012 - 1/1007 =0
(x-2016)/2015 + (x-2016)/2014 - (x-2016)/2012 - (x-2016)/2013 = 0
(x-2016) ( 1/2015 + 1/2016 - 1/2013 - 1/2012) = 0
Mà 1/2015 + 1/2016 - 1/2013 - 1/2012 khác 0
Suy ra x -2016=0
x=2016
Chỗ nào thắc mắc nhớ hỏi mik nhe!
\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\\ \Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\\ \Leftrightarrow3x^2-12x+12+9x-9-3x^2-3x+9=0\\ \Leftrightarrow-6x+12=0\\ \Leftrightarrow x=2\)
\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)
\(\Leftrightarrow3x^2-12x+12+9x-9-3x^2-2x+9=0\)
\(\Leftrightarrow-6x-6=0\)
\(\Leftrightarrow-6\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm là \(-1\)
\(\left(3x-1\right)\left(2x-3\right)\left(2x-3\right)\left(x+5\right)=0\)
Th1 : \(3x-1=0=>x=\frac{1}{3}\)
Th2 : \(2x-3=0=>x=\frac{3}{2}\)
TH3 : \(x+5=0=>x=-5\)
Mik tl mà chẳng có ai T kì quá z
+) \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\left(1\right)\)
+) Lập phương 2 vế ta được :
\(2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\left(2\right)\)
Thay ( 1 ) vào ( 2 ) ta có :
\(\sqrt[3]{x^2-1}.\sqrt[3]{5x}=x\)
\(\Rightarrow4x^3-5x=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{cases}}\)
P/s : ko có tgian làm full . Thông cảm nhen ^-^
Ta có:
(2 - 3x)(x + 8) = (3x - 2)(3 - 5x)
⇔ (2 - 3x)(x + 8) - (3x - 2)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8) + (2 - 3x)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8 + 3 - 5x) = 0
⇔ (2 - 3x)(11 - 4x) = 0
⇔ 2 - 3x = 0 hay 11 - 4x = 0
⇔ 2 = 3x hay 11 = 4x
⇔ x = \(\dfrac{2}{3}\) hay x = \(\dfrac{11}{4}\)
Vậy tập nghiệm của pt S = \(\left\{\dfrac{2}{3};\dfrac{11}{4}\right\}\)
<=> (2-3x ) (x+8) + (2-3x ) (3-5x)=0
<=> (2-3x ) ( x+8 + 3-5x ) =0
<=> (2-3x ) ( 11 - 4x ) = 0
=> 2-3x =0 hoặc 11-4x =0
3x = 2 4x =11
x = 2/3 x = 11/4
\(ĐKXĐ:x\ne2;4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2=\frac{16}{5}\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+12+x^2-4x+4=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Leftrightarrow2x^2-11x+16=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Leftrightarrow\frac{6}{5}x^2-\frac{41}{5}x+\frac{48}{5}=0\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{16}{3}\\x=\frac{3}{2}\end{cases}}\)
\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)
\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)
\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)
\(\Leftrightarrow x+2021=0\)
\(\Leftrightarrow x=-2021\)
\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0.\)
\(\Leftrightarrow x\left(x+2-x-3\right)=0\)
\(\Leftrightarrow-x=0\)
\(\Leftrightarrow x=0\)
x(x + 2) = x(x + 3)
=> x2 + 2x = x2 + 3x
=> x2 + 2x - x2 - 3x = 0
=> -x = 0
=> x = 0
Vậy x = 0