Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này chúng tớ làm nhiều rùi
neu cau noi the thi thui
\(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)
\(\Rightarrow2x-6-3+6x=4+4-4x\)
\(\Rightarrow2x+6x+4x=4+4+3+6\)
\(\Rightarrow12x=17\Rightarrow x=\dfrac{17}{12}\)
Vậy..................
\(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)
\(2x-6-3+6x=4+4-4x\)
\(8x-9=8-4x\)
\(8x=8-4x+9\)
\(8x=17-4x\)
\(12x=17\)
\(x=\dfrac{17}{12}\)
\(\left(x-1\right)^3-\left(x+2\right)^2=\left(2+x\right)^3-2x\left(2+3x\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^2+4x+4\right)=8+12x+6x^2+x^3-4x-6x^2\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^2-4x-4-8-12x-6x^2-x^3+4x+6x^2=0\)
\(\Leftrightarrow-4x^2-9x-13=0\)
\(\Leftrightarrow-\left(4x^2+9x+13\right)=0\Leftrightarrow4x^2+9x+13=0\)
\(\Leftrightarrow4x^2+9x+\dfrac{81}{16}+\dfrac{127}{16}=0\Leftrightarrow\left(2x+\dfrac{9}{4}\right)^2+\dfrac{127}{16}=0\)
ta có : \(\left(2x+\dfrac{9}{4}\right)^2\ge0\) với mọi giá trị của \(x\)
\(\Rightarrow\left(2x+\dfrac{9}{4}\right)^2+\dfrac{127}{16}\ge\dfrac{127}{16}>0\) với mọi giá trị của \(x\)
vậy phương trình vô nghiệm
Đoạn cuối bn giải sai rồi thi phải,sau khi đã tính đc và nhận biết a,b,c nhân với - 1 để có giá trị dương thì mk chỉ việc tính Denta rồi theo quy tắc để tính x1 và x2 thôi (Ý kiến riêng)
\(4x\cdot\left(x:2\right)-3\left(1-2x\right)=7-2\left(x+1\right)\)
\(\Leftrightarrow4x\cdot\dfrac{x}{2}-3+6x=7-2x-2\)
\(\Leftrightarrow2x\cdot x-3+6x=5-2x\)
\(\Leftrightarrow2x^2-3+6x=5-2x\)
\(\Leftrightarrow2x^2-3+6x-5+2x=0\)
\(\Leftrightarrow2x^2-8+8x=0\)
\(\Leftrightarrow2\left(x^2-4+4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2+2\sqrt{2}\\x=-2-2\sqrt{2}\end{matrix}\right.\)
Vậy \(x_1=-2-2\sqrt{2};x_2=-2+2\sqrt{2}\)
\(4x\left(x:2\right)-3x\left(1-2x\right)=7-2\left(x+1\right)\)
\(\Leftrightarrow4x.\dfrac{x}{2}-3+6x-7+2x+2=0\Leftrightarrow2x^2+8x-8=0\Leftrightarrow2\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)-8=0\)
\(\Leftrightarrow\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x-2=\sqrt{8}\\x-2=-\sqrt{8}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+2\\x=-\sqrt{8}+2\end{matrix}\right.\)
Câu 14)
\(a,\\ =-\dfrac{3}{8}+\dfrac{8}{17}+\dfrac{-5}{8}-\dfrac{3}{5}+\dfrac{9}{17}\\ =\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\left(\dfrac{8}{17}+\dfrac{9}{17}\right)-\dfrac{3}{5}\\ =\left(-1\right)+1-\dfrac{3}{5}=0-\dfrac{3}{5}=\dfrac{-3}{5}\\ b,\\ =\dfrac{7}{15}.\dfrac{-15}{14}+\left(\dfrac{27}{16}-\dfrac{1}{8}\right):\dfrac{5}{8}\)
\(=\dfrac{-1}{2}+\dfrac{25}{16}.\dfrac{8}{5}=\dfrac{-1}{2}+\dfrac{5}{2}=2\\ c,\\ =\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+.....+\dfrac{2}{99}-\dfrac{2}{100}\\ =1-\dfrac{1}{50}=\dfrac{49}{50}\)
Câu 15
\(a,2x+\dfrac{-1}{4}=\dfrac{3}{2}\\ 2x=\dfrac{3}{2}-\dfrac{-1}{4}=\dfrac{7}{4}\\ x=\dfrac{7}{4}:2=\dfrac{7}{8}\\ b,\dfrac{15}{x}=\dfrac{-3}{4}\\ x=\dfrac{15.4}{-3}=-20\)