K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

30 nha

19 tháng 10 2021

\(A=\dfrac{3}{2\cdot2}=\dfrac{3}{4}\\ A=\dfrac{3}{2\cdot5}=\dfrac{3}{10}\\ A=\dfrac{3}{2\cdot3}=\dfrac{1}{2}\)

19 tháng 11 2021

a/ Xét tứ giác AEDC có

IA=ID; IC=IE => AEDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> ED//AC và ED=AC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)

b/ 

Ta có AEDC là hbh => AE//DC và AE=DC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)

Mà DC=DB => AE=BD

\(DB\in DC\) => AE//DB

=> AEBD là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau thì là hbh) 

=> EB=AD và EB//AD  (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)

Ta có EB//AD mà \(AD\perp BC\Rightarrow EB\perp BC\)

c/ Ta có AEBD là hbh => JA=JB (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => J là trung điểm AB

d/ Xét \(\Delta ABD\)

JA=JB; IA=ID => IJ là đường trung bình của \(\Delta ABD\) => IJ//BC

\(\Rightarrow IJ=\frac{DB}{2}\)

Ta có DB=DC (Trong tg cân đường cao từ đỉnh đồng thời là đường trung tuyến)\(\Rightarrow DB=\frac{BC}{2}\)

\(\Rightarrow IJ=\frac{DB}{2}=\frac{\frac{BC}{2}}{2}=\frac{1}{4}BC\)

e/

Xét HCN AEBD có

\(\Rightarrow JE=JD=\frac{ED}{2}\)  (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét tg vuông EKD có

\(JE=JD\Rightarrow IK=\frac{ED}{2}=JE=JD\)  (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền) 

\(\Rightarrow\Delta AJK;\Delta BJK\) cân tại J \(\Rightarrow\widehat{BAK}=\widehat{AKJ};\widehat{ABK}=\widehat{BKJ}\) (góc ở đáy tg cân) (1)

Xét \(\Delta AKB\)

\(\widehat{BAK}+\widehat{ABK}+\widehat{AKB}=180^o\) (tổng các góc trong của tg = 180 độ)

\(\Rightarrow\widehat{BAK}+\widehat{ABK}+\widehat{AKJ}+\widehat{BKJ}=180^o\)(2)

Từ (1) và (2) \(\Rightarrow2\left(\widehat{AKJ}+\widehat{BKJ}\right)=180^o\Rightarrow\widehat{AKJ}+\widehat{BKJ}=\widehat{AKB}=90^o\)

f/

Xét tg vuông IBD và tg vuông ICD có

ID chung 

DB=DC (cmt)

\(\Rightarrow\Delta IBD=\Delta ICD\) (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{IBD}=\widehat{ICD}\) (1)

Xét tg vuông IDK

\(\widehat{IDK}+\widehat{CID}=90^o\)

Xét tg vuông ICD

\(\widehat{ICD}+\widehat{CID}=90^o\) 

\(\Rightarrow\widehat{IDK}=\widehat{ICD}\) (cùng phụ với \(\widehat{CID}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{IDK}=\widehat{IBD}\)

19 tháng 11 2021

thanks bạn nhiều

a: \(\left(\dfrac{4}{5}\right)^{2x+7}=\dfrac{625}{256}\)

=>2x+7=-4

hay x=-11/2

b: \(\left(4x-5\right)^4=\left(4x-5\right)^2\)

\(\Leftrightarrow\left(4x-5\right)^2\cdot\left(4x-4\right)\left(4x-6\right)=0\)

hay \(x\in\left\{\dfrac{5}{4};1;\dfrac{3}{2}\right\}\)

d: \(\left(8x-1\right)^{2n+1}=5^{2n+1}\)

=>8x-1=5

hay x=3/4

16 tháng 9 2021

\(a,\left\{{}\begin{matrix}Az\perp Ox\\Ox\perp Oy\left(\widehat{xOy}=90^0\right)\end{matrix}\right.\Rightarrow Az//Oy\)

\(b,\widehat{xOm}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}\cdot90^0=45^0\left(t/c.phân.giác\right)\\ \widehat{nAx}=\dfrac{1}{2}\widehat{xAz}=\dfrac{1}{2}\cdot90^0=45^0\left(t/c.phân.giác\right)\\ \Rightarrow\widehat{xOm}=\widehat{nAx}\left(=45^0\right)\)

Mà 2 góc này ở vị trí đồng vị nên \(Om//An\)

14 tháng 7 2021

A B C x y

Vì BC và Cx là 2 tia đối nên \(\widehat{BCA}\) và \(\widehat{ACx}\) là 2 góc kề bù

\(\Rightarrow\widehat{ACB}+\widehat{ACx}=180^o\)

     \(40^o+\widehat{ACx}=180^o\)

     \(\widehat{ACx}=140^o\)

b) Ta có:\(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\) (tổng 3 góc trong 1 tam giác)

             ​​\(40^o+\widehat{ABC}+70^o=180^o\)

            \(\widehat{ABC}=70^o\)(1)

Vì Oy là phân giác của \(\widehat{ACx}\) nên \(\widehat{xCy}=\dfrac{\widehat{ACx}}{2}=\dfrac{140^o}{2}=70^o\)(2)

Từ (1),(2) => \(\widehat{ABC}=\widehat{xCy}\)

c)Cặp góc đồng vị là \(\widehat{ABC}\) và \(\widehat{xCy}\)

 

 

10 tháng 5 2017

Bài 9:

a)Ta có \(2x^2\ge0\)

Và 1>0

\(\Rightarrow2x^2+1\ge1\)

Vậy đa thức đó vô nghiệm

b)Ta có \(x^2+2x+3=x\cdot x+x+x+1+3\)

\(x\left(x+1\right)+\left(x+1\right)+2=\left(x+1\right)^2+2\)

\(\left(x+1\right)^2\ge0\)

2>0

Vậy \(\left(x+1\right)^2+2\ge2\)

Hay đa thức đó vô nghiệm

10 tháng 5 2017

c) mik chua lam ahihi

12 tháng 7 2017

Ta có: \(\text{| x - 1,5 | + | 2,5 - x | = 0}\)

Ta lại có: \(\left|x-1,5\right|\ge0\) (1)

\(\left|2,5-x\right|\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)(vô lý) Vì \(x=x;1,5\ne2,5\)

Vậy không tồn tại giá trị x thõa mãn.

12 tháng 7 2017

Mình làm rồi nha. Chúc bạn học tốt!!!