K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Câu 8:

Giải:
Ta có: \(a:b=3:4\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)

+) \(\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}\Rightarrow a=\pm\frac{18}{5}\)

+) \(\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}\Rightarrow b=\pm\frac{24}{5}\)

Vậy bộ số \(\left(x;y\right)\)\(\left(\frac{18}{5};\frac{24}{5}\right);\left(\frac{-18}{5};\frac{-24}{5}\right)\)

a: =>5x=3x-6

=>2x=-6

hay x=-3

b: \(\Leftrightarrow\left(x-3\right)^2=4\cdot5^2=100\)

=>x-3=10 hoặc x-3=-10

=>x=13 hoặc x=-7

c: \(\left|x^3+1\right|+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 3:

a: Ta có: \(A=5+5^2+5^3+...+5^8\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)

\(=30\left(1+5^2+5^4+5^6\right)⋮30\)

b: \(B=3+3^3+3^5+...+3^{29}\)

\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\)

\(=273\left(1+3^6+...+3^{24}\right)⋮273\)

17 tháng 4 2017

a) Số cần tìm là:

\(7,2:\dfrac{2}{3}=\dfrac{54}{5}\)

b) Số cần tìm là:

\(\left(-5\right):1\dfrac{3}{7}=\left(-5\right):\dfrac{10}{7}=-\dfrac{7}{2}\)

21 tháng 4 2017

a/ Gọi số cần tìm là x.

Theo đề bài ta có:

x . \(\dfrac{2}{3}=7,2\)

x = 7,2 : \(\dfrac{2}{3}\)

x = \(\dfrac{36}{5}.\dfrac{3}{2}\)

x = \(\dfrac{54}{5}=10,8.\)

Vậy \(\dfrac{2}{3}\) của nó là \(\dfrac{2}{3}\) của 10,8 bằng 7,2.

b/ Gọi số cần tìm là x.

Theo đề bài ta có:

x . \(1^3_7=-5\)

x . \(\dfrac{10}{7}\) = -5

x = -5 : \(\dfrac{10}{7}\)

x = -5 . \(\dfrac{7}{10}\)

x = \(\dfrac{-7}{2}\)= -3,5.

Vậy \(1\dfrac{3}{7}\) của nó là của -3,5 bằng -5.

16 tháng 5 2017

a) Số đó là 375

b) Số đó là -160

13 tháng 4 2019

a) 375

b) -160

16 tháng 4 2017

Giải bài 36 trang 20 SGK Toán 6 Tập 2 | Giải toán lớp 6Đó là hai địa danh HỘI ANMỸ SƠN của Viêt Nam được UNESCO công nhân là di sản văn hóa thế giới vào năm 1999.

13 tháng 6 2018

1/

a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120

=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)

=> 2A = 3^120 - 1

=> A = (3 ^120 - 1)/2

b/ 2A + 1 = 27x

<=> 3^120 = 27x

<=> 27^40 = 27x

<=> x = 40

c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)

= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)

= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)

= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5

+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)

= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)

= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)

= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13

13 tháng 6 2018

2b

Câu hỏi của Raf - Toán lớp 6 - Học toán với OnlineMath

Câu 1 : Thực hiện phép tính 1 cách hợp lý : a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\) b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\) c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\) d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\) Câu 2 : a) 12 ( x - 5 ) = 7x - 5 b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x...
Đọc tiếp

Câu 1 : Thực hiện phép tính 1 cách hợp lý :

a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\)

b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\)

c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\)

d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\)

Câu 2 :

a) 12 ( x - 5 ) = 7x - 5

b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x - 3 ) 2012

Câu 3 :

1) Cho biểu thức S = 1 + 3 + 32 + 33 +...+ 3202 + 3 203

a) chứng tỏ rằng tổng S chia hết cho 52 .

b) Tìm Chữ số tận cùng trong tổng S .

2 ) Cho biểu thức A= \(\dfrac{2n+1}{2n+5}\) . Chứng tỏ rằng với mọi số tự nhiên n thì A là phân số tối giản .

Câu 4 : So sánh tổng gồm 1006 số hạng :

\(S=\dfrac{1}{1.1.3}+\dfrac{1}{2.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{1006.2011.2013}\) với \(\dfrac{2}{3}\)

1
10 tháng 12 2022

Câu 2:

a: \(\Leftrightarrow12x-60=7x-5\)

=>5x=55

=>x=11

b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)

=>(2x-3)(2x-2)(2x-4)=0

hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)

16 tháng 4 2017

Giải bài 9 trang 9 SGK Toán 6 Tập 2 | Giải toán lớp 6

13 tháng 5 2017

3/-4=-3/4;-5/-7=5/7;2/-9=-2/9;-11/-10=11/10