K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

Ta có

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=8\)

Ta lại có

\(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{1}{4}\)

Từ đó ta có

\(P\ge8+\frac{33}{4}=\frac{65}{4}\)

Vậy GTNN là \(\frac{65}{4}\)đạt được khi x = y = 2

25 tháng 10 2016

khonh

tk nheavt678967_60by60.jpg

xin

3 tháng 12 2016

Ta có: \(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2xy}{x-y}\)

\(=x-y+\frac{16}{x-y}\ge2.4=8\)

3 tháng 12 2016

Đặt \(t=x^2+y^2\) thì ta có : 

\(P^2=\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}=\frac{t^2}{t-16}=\frac{1}{\frac{t-16}{t^2}}=\frac{1}{-\frac{16}{t^2}+\frac{1}{t}}=\frac{1}{-16\left(\frac{1}{t}-\frac{1}{32}\right)^2+\frac{1}{64}}\ge\frac{1}{\frac{1}{64}}=64\)

\(\Rightarrow P\ge8\). Đẳng thức xảy ra khi \(\hept{\begin{cases}x^2+y^2=32\\xy=8\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2+2\sqrt{2}\\y=-2+2\sqrt{3}\end{cases}}\)

6 tháng 6 2018

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

29 tháng 8 2018

1. Vì a,d>0 nên ta có (a-b)>=0 tương đương a^2 +b^2 >= 2ab rồi chuyển ad xong từng phân thức rồi chia là ra đpcm

29 tháng 12 2019

\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Vì x>0, y>0 nên xy>0

Áp dụng bất đẳng thức Cô si cho 2 số dương

\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)

Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)

Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

\(\Rightarrow Q\ge4+2+5+2016=2027\)

Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)

27 tháng 6 2017

\(P=\frac{1}{4x^2+1}+\frac{1}{4y^2+1}+\frac{2}{xy}\)

\(=\frac{1}{4x^2+1}+\frac{1}{4y^2+1}+\frac{\frac{64}{25}}{8xy}+\frac{42}{25xy}\)

\(\ge\frac{\left(1+1+\frac{8}{5}\right)^2}{4\left(x+y\right)^2+2}+\frac{42}{\frac{25\left(x+y\right)^2}{4}}=\frac{12}{5}\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

19 tháng 11 2015

Điểm rơi: \(x=y=\frac{1}{2}.\)

\(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{1}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

\(=\frac{1}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge2+\frac{6}{1^2}=8\)