Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1-1/2+1.2-1/3+1/3-1/4+..+1/x-1/x+1=2018/2019
1-1/x+1=2018/2019
1-2018/2019=1/x+1
1/2019=1/x+1
=>x+1=2019
=>x=2018
vậy...
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2018}{2019}.\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2018}{2019}.\)
\(\frac{1}{1}-\frac{1}{x+1}=\frac{2018}{2019}\)
\(\frac{1}{1}-\frac{2018}{2019}=\frac{1}{x+1}\)
\(\frac{1}{2019}=\frac{1}{x+1}\)
=> \(2019=x+1\)
\(x+1=2019\)
\(x=2019-1\)
\(x=2018\)
Vậy x = 2018
1/1.2+1/2.3+1/3.4+...+1/2005.2006=(1-1/2)+(1/2-1/3)+...+(1/2005-1/2006)=1-1/2+1/2-1/3+...+1/2005-1/2006
=1-(1/2-1/2)+...-1/(1/2005-1/2005)-1/2006=1-1/2006=2005/2006
k mình nha
Bài 3 :
b) Ta có 1+ 2 + 3 +4 + ...+ x =15
Nên \(\frac{x\left(x+1\right)}{2}=15\)
\(x\left(x+1\right)=30\)
=> \(x\left(x+1\right)=5.6\)
=> x = 5
Bài 2:
h; \(\dfrac{2}{3}\)\(x\) + 50% + \(x\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{3}\)\(x\) + \(\dfrac{1}{2}\) + \(x\) = \(\dfrac{1}{10}\)
(\(\dfrac{2}{3}\)\(x\) + \(x\)) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) (\(\dfrac{2}{3}\) + 1) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{1}{10}\) - \(\dfrac{1}{2}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{-2}{5}\)
\(x\) = \(\dfrac{-2}{5}\): \(\dfrac{5}{3}\)
\(x\) = - \(\dfrac{6}{25}\)
Lớp 5 chưa học số âm em nhé.
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{10}{11}\)
=>\(1-\frac{1}{x+1}=\frac{10}{11}\)
=>\(\frac{1}{x+1}=1-\frac{10}{11}\)
=>\(\frac{1}{x+1}=\frac{1}{11}\)
=>x+1=11
=>x=10
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(x-1\right)\times x}=\frac{15}{16}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x-1}-\frac{1}{x}=\frac{15}{16}\)
\(1-\frac{1}{x}=\frac{15}{16}\)
\(\frac{1}{x}=\frac{1}{16}\)
\(\Rightarrow x=16\)
a)=1/2*2/3......*19/20
=1/20
b)=3/2*4/3......*2008/2007
=3/2007
1/2004 x [ 1- 1/2005 ] x [ 1- 1/2006 ] x......x [1- 2014 ] = 1/2004 x 2004/2005 x 2005/2006 x ..x 2013/2014
= 1/2014
A= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128+ 1/256 + 1/512 + 1/1024 nên 2A = 1 + 1/2 + .. + 1/512
2A - A = 1 - 1/1024 = 1023/1024
\(\frac{1}{2x4}\)+ \(\frac{1}{4x6}\) + \(\frac{1}{6x8}\) + ....... + \(\frac{1}{18x20}\)
= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{6}\) + \(\frac{1}{6}\) - \(\frac{1}{8}\) + ....... + \(\frac{1}{18}\) - \(\frac{1}{20}\)
= \(\frac{1}{2}\) - \(\frac{1}{20}\)
= \(\frac{9}{20}\)
~ Hok T ~
a) x-2006 = 1-1/2+1/2-1/3+1/3-.....-1/2006
=>x-2006= 1- 1/2006
=> x-2006 = 2005/2006
=> x = 2006 \(\frac{2005}{2006}\)
a, \(\Rightarrow\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2006-2005}{2005.2006}=x-2006\)
\(\Rightarrow\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{2006}{2005.2006}-\frac{2005}{2005.2006}=x-2006\)
Giản ước tử cho mẫu của từng phân số ta được:
Đề bài phần b không rõ lắm nên mình chưa làm