Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)
b/ Pt có 2 nghiệm phân biệt
\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)
\(\to m\in \mathbb R\)
c/ Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)
Tổng bình phương các nghiệm là 10
\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)
\(\to 4m^2-4m+2=10\)
\(\leftrightarrow 4m^2-4m-8=0\)
\(\leftrightarrow m^2-m-2=0\)
\(\leftrightarrow m^2-2m+m-2=0\)
\(\leftrightarrow m(m-2)+(m-2)=0\)
\(\leftrightarrow (m+1)(m-2)=0\)
\(\leftrightarrow m+1=0\quad or\quad m-2=0\)
\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)
Vậy \(m\in\{-1;2\}\)
Ta có : \(ax^2+3\left(a+1\right)x+2a+4=0\left(a=a;b=3a+3;c=2a+4\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-3a-3}{a};x_1x_1=\frac{2a+4}{a}\)
Theo bài ra ta có : \(x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\) Thay vào ta đc :
\(\Leftrightarrow\left(\frac{-3a-3}{a}\right)^2-2\left(\frac{2a+4}{a}\right)=4\)
\(\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a+8}{a}=4\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a^2+8a}{a^2}=\frac{4a^2}{a^2}\)
Khử mẫu ta đc : \(9\left(a+1\right)^2-4a^2+8a=4a^2\)
\(\Leftrightarrow9\left(a^2+2a+1\right)-4a^2+8a=4a^2\)
\(\Leftrightarrow9a^2+18a+9-4a^2+8a-4a^2=0\)
\(\Leftrightarrow a^2+27a+9=0\)Ta có : \(\Delta=27^2-4.9=729-36=613>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-27-\sqrt{613}}{2};x_2=\frac{-27+\sqrt{613}}{2}\)
Phần a dễ bạn tự làm nha!!! :))
b, Ta có: \(\Delta^'=\left[-\left(m+1\right)\right]^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)
=> PT luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{cases}}\)
Ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)
\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=2\)
\(\Leftrightarrow x_1+x_2-2+2\sqrt{x_1x_2}=0\)
\(\Leftrightarrow2\left(m+1\right)-2+2\sqrt{2m}=0\)
\(\Leftrightarrow2m+2\sqrt{2m}=0\)
\(\Leftrightarrow m+\sqrt{2m}=0\)
\(\Leftrightarrow\sqrt{m}\left(\sqrt{m}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{m}=0\\\sqrt{m}+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\\sqrt{m}=-\sqrt{2}\end{cases}}}\)
Vậy: m = 0
=.= hk tốt!!
a) Khi m=1 thì pt<=>x2-4x+2=0
Có:\(\Delta\)'=(-2)2-2=2>0=>pt có 2 nghiệm là x1=\(2+\sqrt{2}\)và x2=2-\(\sqrt{2}\)
b)Để pt có nghiệm thì \(\Delta\)'=(m+1)2-2\(\ge\)0<=>m\(\ge\)\(\sqrt{2}\)-1
Theo định lý Viète thì:x1+x2=2(m+1)=\(\sqrt{2}\)<=>\(\frac{\sqrt{2}-2}{2}\)
Lời giải:
Đặt \(x^2=t(t\geq 0)\) thì pt ban đầu trở thành:
\(t^2-2(m+1)t+2m+1=0(*)\)
Để pt ban đầu chỉ có 2 nghiệm phân biệt thì $(*)$ chỉ có một nghiệm dương.
-------
Xét \(\Delta'_{*}=(m+1)^2-(2m+1)=m^2\)
Theo công thức nghiệm của pt bậc 2 suy ra \((*)\) luôn có nghiệm:
\(t_1=1; t_2=2m+1\)
Vậy $(*)$ có một nghiệm dương khi mà:
\(\left[\begin{matrix} 2m+1=1\\ 2m+1< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=0\\ m< \frac{-1}{2}\end{matrix}\right.\)
Vậy \(m=0\) hoặc \(m< \frac{-1}{2}\)
a) tại m=1 thì pt có dạng \(x^2-4x+3-2=0\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
a) \(\left(x+1\right)^4+\left(x+3\right)^4=2m\left(1\right)\)
Đặt \(x+2=t\)
Khi đó phương trình \(\left(1\right)\) trở thành \(\left(t-1\right)^4+\left(t+1\right)^4=2m\)
\(\Leftrightarrow2t^4+12t^2-2m+2=0\)
\(\Leftrightarrow t^4+6t^2-m+1=0\left(2\right)\)
Đặt \(t^2=u\left(u\ge0\right)\)
Khi đó phương trình \(\left(2\right)\) trở thành \(u^2+6u-m+1=0\left(3\right)\)
Thay \(m=1\) vào \(\left(3\right)\) ta có:
\(u^2+6u-1+1=0\Leftrightarrow u^2+6u=0\Leftrightarrow u\left(u+6\right)=0\Leftrightarrow\left[{}\begin{matrix}u=0\\u+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}u=0\left(\text{nhận}\right)\\y=-6\left(\text{loại}\right)\end{matrix}\right.\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
Vậy với \(m=1\) thì phương trình có nghiệm là \(x=-2\).
b) Để phương trình có hai nghiệm phân biệt thì \(\left(3\right)\) trái dấu \(\Leftrightarrow-m+1< 0\Leftrightarrow m>1\)
Vậy với \(m>1\) thì phương trình có hai nghiệm phân biệt.