Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
A = |\(x\) + 5| + 2023
|\(x\) + 5| ≥ 0 ⇒| \(x\) + 5| + 2023 ≥ 2023⇒ A(min) = 2023 xảy ra khi \(x\) = -5
B = (\(x+2\))2 - 2023
(\(x\) + 2)2 ≥ 0 ⇒ (\(x\) + 2)2 ≥ - 2023 ⇒ A(min) = -2023 xảy ra khi \(x\) = -2
C = \(x^2\) - 6\(x\) + 20
C = (\(x^2\) - 3\(x\)) - ( 3\(x\) - 9) + 11
C = \(x\)(\(x-3\)) - 3(\(x\) -3) + 11
C = (\(x-3\))(\(x\)-3) + 11
C = (\(x-3\))2 + 11
(\(x\) -3)2 ≥ 0 ⇒ (\(x\) - 3)2 + 11 ≥ 11 vậy C(min) = 11 xảy ra khi \(x=3\)
D = \(x^2\) + 10\(x\) - 25
D = \(x^2\) + 5\(x\) + 5\(x\) + 25 - 55
D = (\(x^2\) + 5\(x\)) + (5\(x\) + 25) - 50
D = \(x\)(\(x\) + 5) + 5(\(x\) + 5) - 50
D = (\(x\) +5)(\(x\) + 5) - 50
D = ( \(x\) + 5)2 - 50
(\(x+5\))2 ≥ 0 ⇒ (\(x\) + 5)2 - 50 ≥ -50 ⇒ D(min) = -50 xảy ra khi \(x\) = -5
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra: a = kb
c = kd
Do đó: \(\frac{a\cdot c}{b\cdot d}=\frac{kb\cdot kd}{b\cdot d}=\frac{k^2\cdot\left(b\cdot d\right)}{b\cdot d}=k^{2\left(1\right)}\)
\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(kb\right)^2-\left(kd\right)^2}{b^2-d^2}=\frac{k^2b^2-k^2d^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2^{\left(2\right)}\)
Từ (1) và (2) suy ra \(\frac{a\cdot c}{b\cdot d}=\frac{a^2-c^2}{b^2-d^2}\left(đpcm\right)\)
theo bài ra ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\left(1\right)\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\) ( tính chất dãy tỉ số bằng nhau )
tù 1 và 2 ta có: \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Đáng lẽ (a-b)2/ (a-d)2 là \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)chứ ? Có chép sai đề không vậy ?