K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\sqrt{5}\left(cm\right)\)

Vì AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=\dfrac{5\sqrt{5}}{2}\)

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )

=> ΔABC vuông tại A

a. Vì Am là trung tuyến của BC

=> AM =1/2 BC

=> AM = 5cm.

b. Xét tứ giác ADME, ta có:

góc DAE + góc AEM + góc EMD + góc MDA = 360°

=> 90° + 90° + góc EMD + 90° = 360°

=> góc EMD = 90°

=> Tứ giác ADME là hình chữ nhật.

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.

5 tháng 7 2016

B A C M I D

5 tháng 7 2016

Sao khó zậy

 

29 tháng 4 2018

a) bn lm đc rồi nên mk bỏ qua nhé

b)  Áp dụng định lý Putago vào tam giác vuông ABC ta có

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=21^2+28^2=1225\)

\(\Leftrightarrow\)\(BC=\sqrt{1225}=35\)cm

\(\Delta ABC\)vuông tại  \(A\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(AM=\frac{1}{2}BC=17,5\)cm

\(\Delta HBA~\Delta ABC\) (câu a)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm

c)  \(\Delta BAC\)có    \(EM\)\(//\)\(AC\) (cùng vuông góc với AB)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{CM}{CB}\) (1)

   \(\Delta CAB\) có   \(MF\)\(//\)\(AB\) (cùng vuông góc với AC)

\(\Rightarrow\) \(\frac{AF}{AC}=\frac{BM}{BC}\) (2)

   \(\Delta ABC\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(MB=MC\)(3)

Từ (1), (2) và (3)  suy ra:

   \(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\)\(EF\)\(//\)\(BC\)  (định lý Ta-lét đảo)

26 tháng 4 2021

cảm ơn ạ

 

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.

19 tháng 1 2016

khó mới đăng dể đăng làm gì

a: Sửa đề: BC=10cm và ΔABC vuông tại A

\(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)

b: Kẻ AH vuông góc BC

\(S_{ABM}=\dfrac{1}{2}\cdot AH\cdot BM\)

\(S_{ACM}=\dfrac{1}{2}\cdot AH\cdot CM\)

mà BM=CM

nên \(S_{ABM}=S_{ACM}\)