K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2023

A) \(...=\left(7y-3\right)^3\)

B) \(...=\left(4y-3\right)^3\)

C) \(...=x^4+2x^2+1-\left(y^2+2y+1\right)\)

\(=\left(x^2+1\right)^2-\left(y+1\right)^2\)

D) \(...=x^2-6x+9-\left(y^2-10y+25\right)\)

\(=\left(x-3\right)^2-\left(y-5\right)^2\)

23 tháng 7 2023

cậu có thể giải chi tiết giúp tớ dc ko

 

26 tháng 7 2019

a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)

b) \(x^3-6x^2+12x-8=\left(x-2\right)^3\)

c) \(x^2-2xy+y^2-16=\left(x-y\right)^2-4^2=\left(x-y+4\right)\left(x-y-4\right)\)

d) \(49-x^2+2xy-y^2=7^2-\left(x-y\right)^2=\left(7+x-y\right)\left(7-x+y\right)\)

8 tháng 8 2019

TL:

\(B=2x^2+y^2-2xy-2x+3\)

    \(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)

    \(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)

8 tháng 8 2019

\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)

18 tháng 4 2020

a/(-y+6x)-(x+y)=-y+6x-x-y=5x-2y

ta có y=7 và y-x=12 => x=-5

thế x,y ta đó 5x-2y=-25-14=-39

b/ta có 3y2+3x2+6xy=3(x+y)2=3*1=3

10 tháng 6 2018

Bài 1:

a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)

..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)

............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)

c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)

..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)

d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)

10 tháng 6 2018

Bài 2:

a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)

b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)

c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)

d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)

\(A=\left(x-2\right)^2\ge0\forall x\)

Dấu '=' xảy ra khi x=2

\(B=\left(2x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=1/2

\(D=\left(x^2-9\right)^4+\left|y-2\right|-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x^2-9=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;2\right);\left(3;2\right)\right\}\)

Bài 1: 

\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)

\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)

Do đó: \(2\cdot f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)

=>\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)

\(g\left(x\right)=5x^4-3x^3+2x^2+4x-7-4x^4+6x^3-7x^2-8x+9\)

\(=x^4+3x^3-5x^2-4x+2\)

27 tháng 3 2019

2/ Vì Q có bậc 3 nên \(ax^5y^2-2x^5y^2+bxy^4=\left(a-2\right)x^5y^2+bxy^4\) có hệ số =0

Vậy a=2; b=0.

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

$M=4x^2(x^2+y^2)+2y^2(x^2+y^2)+20y^2$

$=4x^2.10+2y^2.10+20y^2$

$=40x^2+20y^2+20y^2=40x^2+40y^2=40(x^2+y^2)=40.10=400$