K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(\Rightarrow\left(4n^3+2n^2-6n^2-3n+2n+1+3\right)⋮\left(2n+1\right)\\ \Rightarrow\left[\left(2n+1\right)\left(2n^2-3n+1\right)+3\right]⋮\left(2n+1\right)\\ \Rightarrow2n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-2;-1;0;1\right\}\)

23 tháng 10 2021

\(4n^3-4n^2-n+4⋮2n+1\)

\(\Leftrightarrow4n^3+2n^2-6n^2-3n+2n+1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

16 tháng 11 2018

ta có: 4n^3 - 4n^2 - n + 4 chia hết cho 2n + 1

=> 4n^3 + 2n^2 - 6n^2 - 3n + 2n + 1 + 3 chia hết cho 2n + 1

2n^2.(2n+1) - 3n.(2n+1) + (2n+1) + 3 chia hết cho 2n + 1

(2n+1).(2n^2-3n+1) + 3 chia hết cho 2n + 1

mà (2n+1).(2n^2-3n+1 chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=>...

bn tự làm tiếp nha

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

25 tháng 9 2021

Mình đang cần gấp

26 tháng 12 2017

https://goo.gl/BjYiDy

26 tháng 12 2017

Ta có : n3 - 2n + 3n + 3 

= n3 - n + 3 

= n(n2 - 1) 

= n(n - 1)(n + 1) + 3 

Để n3 - 2n + 3n + 3 chia hết cho n - 1

=> n(n - 1)(n + 1) + 3  chia hết cho n - 1

=> 3  chia hết cho n - 1

=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-2;0;2;4}

24 tháng 12 2016

Đặt A=(n^4-3n^3+n^2-3n+10)/(n^2+1)

=(n^4+n^2-3n^3-3n+1)/(n^2+1)

=[n^2(n^2+1)-3n(n^2+1)+1]/(n^2+1)

=[(n^2+1)(n^2-3n)+1]/(n^2+1)

để A E Z thì tử phải chia hết cho mẫu,mà (n^2+1)(n^2-3n) chia hết cho (n^2+1)

=>1 chia hết cho n^2+1

=>n^2+1 E Ư(1)

mà n^2+1 >= 1 (với mọi n)

=>n^2+1 chỉ có thể = 1 

=>n=0

Vậy...............

30 tháng 12 2016

Ta có (n^4-3n^3+n^2-3n+10)/(n^2+1)

  = (n^4+n^2-3n^3-3n+1)/(n^2+1)

= [n^2(n^2+1)-3n(n^2+1)+1]/(n^2+1)

[(n^2+1)(n^2-3n)+1]/(n^2+1)

Để biểu thức nguyên

<=> [(n^2+1)(n^2-3n)+1] chia hết cho n^2+1

mà 1 chia hết cho n^2+1

n^2+1 thuộc Ư(1)

XÉT n^2+1=1

      n        =0

xát n^2+1 =-1( vô lí)

Vậy n = 0 thì bt nguyên

28 tháng 7 2016

x -2x 2 3 +3x +50 x+3 x -x 3 2 -3x 2 -5x 2 -5x +3x 5x +15x 2 +50 18x +50 +18 -18x -54 -4

\(\frac{x^3-2x^2+3x+50}{x+3}=\left(x^2-5x+18\right)\left(x+3\right)-4=\left(x^2-5x+18\right)+\frac{-4}{x+3}\)

Đề \(\left(x^3-2x^2+3x+50\right)\)chia hết cho \(\left(x+3\right)\)thì \(-4\)chia hết \(\left(x+3\right)\)

mà \(x+3\)là ước của -4.

\(\Rightarrow x+3=-1;1;-2;2-4;4\)

\(\cdot x+3=-1\Rightarrow x=-4\)(nhận)

\(\cdot x+3=1\Rightarrow x=2\)(nhận)

\(\cdot x+3=-2\Rightarrow x=-5\)(nhận)

\(\cdot x+3=2\Rightarrow x=-1\)(nhận)

\(\cdot x+3=-4\Rightarrow x=-7\)(nhận)

\(\cdot x+3=4\Rightarrow x=1\)(nhận)

Vậy \(x=-7;-5;-4;-1;1;2\)thì \(\left(x^3-2x^2+3x+50\right)\)chia hết cho \(\left(x+3\right)\)