K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Chọn D

Chọn ngẫu nhiên một quả trong 30 quả có 30 cách. Vậy n ( Ω ) = 30.

Gọi A là biến cố: “lấy được quả cầu màu xanh”.

Ta có n(A) = 20 => P(A) = 2 3

Gọi B là biến cố: “lấy được quả cầu ghi số lẻ”.

Ta có n(B) = 15 => P(B) = 1 2 .

Số quả cầu vừa màu xanh vừa ghi số lẻ: 10 (quả).

Xác suất để lấy được quả cầu vừa màu xanh vừa ghi số lẻ:

Xác suất để lấy được quả cầu màu xanh hay ghi số lẻ:


17 tháng 12 2017

Rõ ràng trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả màu đỏ, 5 quả màu đỏ ghi số chẵn, 25 quả màu xanh hoặc ghi số lẻ. Vậy theo định nghĩa

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong đó A, B, C, D là các biến cố tương ứng với các câu a), b), c) ,d).

18 tháng 5 2017

Trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả mầu đỏ, 5 quả mầu đỏ ghi số chẵn, 25 quả mầu xanh hoặc ghi số lẻ. Vậy theo định nghĩa :

a) \(P\left(A\right)=\dfrac{15}{30}=\dfrac{1}{2}\)

b) \(P\left(B\right)=\dfrac{10}{30}=\dfrac{1}{3}\)

c) \(P\left(C\right)=\dfrac{5}{30}=\dfrac{1}{6}\)

d) \(P\left(D\right)=\dfrac{25}{30}=\dfrac{5}{6}\)

2 tháng 1 2021

đc chọn j nữa bạn

3 tháng 1 2021

Fdcgt

2 tháng 8 2018

Chọn D

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

-         Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega  \right) = C_9^2 = 36\)

-         Số cách lấy 2 quả khác màu là:

+ 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\)

+ 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\)

+ 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\)

=> Tổng số cách lấy ra 2 quả khác màu là: 26 cách

-         Số cách lấy 2 quả khác màu trùng số:

+ 2 quả cùng là số 1: \(C_3^2 = 3\)

+ 2 quả cùng là số 2: \(C_3^2 = 3\)

+ 2 quả cùng là số 3: \(C_2^2 = 1\)

=> Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách

=> Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách)

=> Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)

NV
16 tháng 11 2021

Không gian mẫu: \(C_{15}^3=455\)

Số cách chọn 3 quả sao cho vừa khác màu vừa khác số:

\(4.4.4=64\)

Xác suất: \(P=\dfrac{64}{455}\)

16 tháng 11 2021

g