K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
26 tháng 7 2021

ta có 

\(x^2\ge0\Rightarrow3x^2+1\ge1\) Vậy giá trị nhỏ nhất của A =1 , dấu = xảy ra khi x=0

b. ta có \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left(6-3y\right)^2\ge0\end{cases}\Rightarrow\left|x+1\right|+\left(6-3x\right)^2+3\ge3}\)Vậy giá trị nhỏ nhất của B=3 , dấu = xảy ra khi \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

23 tháng 1 2017

mk ko biết, nhìn hoi phức tạp nhỉ

14 tháng 7 2017
 
 
 

Ta có : 4.|x - 2| 0x

=> 10 - 4.|x - 2| 10x

Vậy min của biểu thức là 10 khi x = 2 

k nha ~ Chúc bạn học giỏi ~
 
Câu hỏi tương tự Đọc thêm Báo cáo
 
 
 
 
 
 
 
 
14 tháng 7 2017

Ta có : 4.|x - 2| \(\ge0\forall x\)

=> 10 - 4.|x - 2| \(\le10\forall x\)

Vậy min của biểu thức là 10 khi x = 2 

26 tháng 6 2017

1a, 15-/2x-1/=8

=>/2x-1/=15-8 =7

=> 2x-1 =8 hoặc 2x-1=-8

=>2x =8+1=9 hoặc 2x=-8+1 =-7

=> x = 9:2 =4,5 hoặc 2x = (-7):2 = -3,5

vậy..........

26 tháng 6 2017

1b, /x+2/ +/5-2y/ =0

=> /x+2/=0và /5-2y/ =0

=> x=2 và 2y =5

=>x=2 và y=2,5

vậy....................