Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M
a/ Áp dụng BĐT ba điểm :
\(AM+MB\ge AB\) ; \(BM+MC\ge BC\); \(CM+MD\ge CD\) ; \(DM+MA\ge DA\)
Cộng theo vế : \(2\left(MA+MB+MC+MD\right)\ge AB+BC+CD+DA\)
\(\Leftrightarrow MA+MB+MC+MD\ge\frac{AB+BC+CD+DA}{2}\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
b/ Ta cũng áp dụng BĐT ba điểm :
\(AM+MC\ge AC\) ; \(BM+MD\ge BD\)
Cộng theo vế : \(MA+MB+MC+MD\ge AC+BD\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
Bạn hỏi tự vẽ hình nhá
a) Kẻ \(ME\perp AD,MF\perp BC,MG\perp AB,MH\perp CD\)
\(MA^2+MC^2=MB^2+MD^2\)( cùng bằng \(ME^2+MG^2+MF^2+MH^2\))
b) Chứng mih tương tự=>kết quả không đổi.
Ta có: \(MA^2+MC^2=MB^2+MD^2\)(cùng bằng \(ME^2=AE^2+MF^2+CF^2\))
Vậy khi điểm M nằm ngoài hình chữ nhật ABCD thì đẳng thức ở câu a) vẫn đúng.
Qua điểm M, kẻ đoạn thẳng HK vuông góc với AB và CD (H thuộc AB và K thuộc CD)
=> AHKD và HBCK là hcn
=> AH = DK và HB = KC
ABCD là hv \(\Rightarrow BM+MD=BD=\sqrt{2}AB=\sqrt{2}\)
\(\Delta HAM\) vuông tại H \(\Rightarrow MA^2=AH^2+HM^2\left(ptg\right)=DK^2+HM^2\)
\(\Delta HBM\) vuông tại H \(\Rightarrow MB^2=HM^2+HB^2\left(ptg\right)\)
\(\Delta KMD\) vuông tại K \(\Rightarrow MD^2=KM^2+KD^2\left(ptg\right)\)
\(\Delta KMC\) vuông tại K \(\Rightarrow MC^2=KC^2+MK^2\left(ptg\right)=HB^2+MK^2\)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1\right)\left(MB^2+MD^2\right)\ge\left(MB+MD\right)^2\)
\(\Rightarrow MB^2+MD^2\ge\dfrac{\left(MB+MD\right)^2}{2}=\dfrac{\left(\sqrt{2}\right)^2}{2}=1\)
Ta có:
\(MA^2+MD^2+MB^2+MC^2\)
\(=\left(DK^2+HM^2\right)+\left(HM^2+HB^2\right)+\left(KM^2+KD^2\right)+\left(HB^2+MK^2\right)\)
\(=2\left(DK^2+KM^2\right)+2\left(HM^2+HB^2\right)\)
\(=2\left(MD^2+MB^2\right)\)
\(\ge2\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi \(MA=MB=MC=MD=\dfrac{\sqrt{2}}{2}\)
Từ M lần lượt kẻ MH vuông góc với AB, MK vuông góc với BC, MN vuong góc với DC
dễ dàng cm được các tứ giác HMKB,KMNC,AHND là hình chữ nhật
Sử dụng định lí Py-ta-go có
MA2=AH2+HM2
MC2=MK2+KC2
Ta luôn có AH=DN,MH=BK,KC=MN ( tính chất hình chữ nhật)
Ta có MA2+MC2=AH2+HM2+MK2+KC2=BK2+MK2+MN2+DN2=MB2+MD2
Thay số được
MC=\(\sqrt{4012013}\)
Chứng minh MC^2 + MA^2 = MB^2 + MD^2 BẰNG PITAGO