Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{6}{x^2+2}-1+\frac{12}{x^2+8}-1=1-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{6}{x^2+2}-\frac{x^2+2}{x^2+2}+\frac{12}{x^2+8}-\frac{x^2+8}{x^2+8}=\frac{x^2+3}{x^2+3}-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}=\frac{x^2-4}{x^2+3}\)
\(\Leftrightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}+\frac{-x^2+4}{x^2+3}=0\)
\(\Leftrightarrow\left(-x^2+4\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\right)=0\)
\(\Leftrightarrow-x^2+4=0\left(\text{vì : }\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\ne0\right)\)
<=>(2-x)(2+x)=0
<=>x=2 hoặc x=-2
Vậy S={-2;2}
a) Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
b) Ta có:
Ta có: với mọi số thực x
⇒ với mọi số thực x
⇒ với mọi số thực (ĐPCM)
Talk Show ở Trung tâm Better English hả bạn
Đây là diễn đàn Toán , Please , stop , now