Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2=x\left(y+z\right)\Rightarrow2x^2+2y^2+2z^2=2xy+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2xz=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+y^2+z^2=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\)
\(\left(x-z\right)^2\ge0\forall x,z\)
\(y^2\ge0\forall y\)
\(z^2\ge0\forall z\)
\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2\ge0\forall x,y,z\)
Dấu = xảy ra <=>\(\hept{\begin{cases}x=y\\x=z\\y=0;z=0\end{cases}}\)
=> x=y=z=0 là nghiệm của pt
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
ta có : x^2 + y^2 +z^2 = xy + yz + xz
=> 2x^2 + 2y^2 +2z^2 = 2xy + 2yz + 2xz
=> ( x^2 - 2xy + y^2) + ( y^2 - 2yz + z^2 ) + ( z^2 -2xz + x^2 ) =0
=> ( x-y )^2 + ( y-z )^2 + ( z -x)^2 =0
=> x =y=z
thay vào .......
a) (x+y)2 + (x-y)2 + 2(x+y)(x-y) = (x + y + x - y)2 = (2x)2
b) (x-y+z)2 + (y-z)2 + 2(x-y+z)(y-z) = (x-y+z+y-z)2 = x2
c) (x+y+z)2 - 2(x+y+z)(x+y) + (x+y)2 = (x+y+z-x-y)2 = z2
Em mới lớp 7 thôi nên không chắc
Nhân 2 vào hai vế:
\(PT\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)
Đến đây dễ rồi.