K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

\(Giải:\)

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.......+\frac{1}{20}\left(1+.......+20\right)\)

\(B=1+\frac{1}{2}\left(\frac{3.2}{2}\right)+\frac{1}{3}\left(\frac{4.3}{2}\right)+\frac{1}{4}\left(\frac{5.4}{2}\right)+.......+\frac{1}{20}\left(\frac{21.20}{2}\right)\)

\(B=1+\frac{3.2}{2.2}+\frac{4.3}{3.2}+\frac{5.4}{4.2}+.........+\frac{21.20}{20.2}\)

\(B=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+.........+\frac{21}{2}=\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+.........+\frac{21}{2}-\frac{1}{2}\)

\(=\frac{1+2+3+.........+21-1}{2}=\frac{22.21-1}{4}=\frac{242-1}{4}=\frac{241}{4}=60\frac{1}{4}\)

25 tháng 5 2016

Mình mới học lớp 5

25 tháng 5 2016

mình ko trả lời được đâu nha!

12 tháng 12 2016

áp dung \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)

4 tháng 7 2017

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)

\(=\frac{1}{n+1}\)

\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

\(=\frac{2+3+4+5+...+21}{2}=115\)

8 tháng 5 2016

xin hãy cứu tui

8 tháng 5 2016

1)Tính 1+1/2(1+2)+...+1/20(1+2+...+20)

Đặt M=1+1/2(1+2)+...+1/20(1+2+...+20)

2M=2[1+1/2(1+2)+...+1/20(1+2+...+20)]

2M=2+3+...........+21=230

M=230/2=115

=>f(x)=ax2009-bx2011+115

=>f(-1)=-a+b+115 mà f(-1)=1780 nên -a+b+115=1780

-a+b=1780-115=1665

nên b=1665+a(1)

=>f(1)=a-b+115 (2)

Từ (1);(2) => f(1)=a-(1665+a)+115=a-1665-a+115=1780

Vậy f(1)=1780

2)Ta có: |2x+4|>=0(với mọi x)

=>-|2x+4|<=0(với mọi x)

|3y-5|>=0(với mọi x)

=>-|3y-5|<=0(với mọi x)

=>-|2x+4|-|3y-5|<=0(với mọi x)

=>-30-|2x+4|-|3y-5|<=-30(với mọi x) hay M<=-30(với mọi x)

Do đó, GTLN của M là -30 khi:

2x+4=0          và 3y-5=0

2x=0-4              3y=0+5

x=-4/2                y=5/3

x=-2                   y=5/3

Vậy để M có GTLN thì x=-2;y=5/3

t nhẩm hết nên ko chắc, có j tự tính lại rồi ib

16 tháng 5 2017

Ta có: 1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)

=> \(1=\frac{1x2}{2};\frac{1}{2}\left(1+2\right)=\frac{2x3}{2x2};\frac{1}{3}\left(1+2+3\right)=\frac{3x4}{2x3};\)\(;\frac{1}{4}\left(1+2+3+4\right)=\frac{4x5}{2x4};...;\frac{1}{20}\left(1+2+3+...+20\right)=\frac{20x21}{2x20}\)

=> \(B=\frac{1x2}{2}+\frac{2x3}{2x2}+\frac{3x4}{2x3}+\frac{4x5}{2x4}+...+\frac{20x21}{2x20}\)

=> \(B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

=> \(B=\frac{1}{2}\left(2+3+4+5+...+21\right)=\frac{1}{2}\left(\frac{21.22}{2}-1\right)\)

=> \(B=\frac{230}{2}=115\)

Đáp số: B=115

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0