Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=1+3+3^2+3^3+...+3^{119}\)
\(3M=3+3^2+3^3+3^4+...+3^{119}+3^{120}\)
\(3M-M=\left(3+3^2+3^3+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)
\(2M=3^{120}-1\)
\(M=\frac{3^{120}-1}{2}\)
b) \(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{117}\right)\)chia hết cho \(13\).
\(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(=40\left(1+3^4+...+3^{116}\right)\)chia hết cho \(5\).
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
Bài làm đây nè
\(M=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{116}+\left(1+3+3^2+3^3\right) \)\(=40\left(0+3^4+....+3^{116}\right)\) chia hết cho 5
Vậy M chia hết cho 5
Chúc bạn được điểm cao
a/ \(M=1+3+3^2+.....+3^{119}\)
\(\Leftrightarrow3M=3+3^2+.....+3^{119}+3^{120}\)
\(\Leftrightarrow3M-M=\left(3+3^2+.....+3^{120}\right)-\left(1+3+....+3^{119}\right)\)
\(\Leftrightarrow2M=3^{120}-1\)
\(\Leftrightarrow M=\dfrac{3^{120}-1}{2}\)
b/ \(M=1+3+3^2+..........+3^{119}\)
\(=\left(1+3+3^2\right)+........+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=1\left(1+3+3^2\right)+........+3^{117}\left(1+3+3^2\right)\)
\(=1.13+.....+3^{117}.13\)
\(=13\left(1+.....+3^{117}\right)⋮13\Leftrightarrow M⋮13\left(đpcm\right)\)
A = 1 + 3 + 32 + ... + 3119
A = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 3117 + 3118 + 3119 )
A = 13 + 33 . ( 1 + 3 + 32 ) + ... + 3117 . ( 1 + 3 + 32 )
A = 13 + 33 . 13 + ... + 3117 . 13
A = 13 . ( 33 + ... + 3117 ) \(⋮\)13
Vậy : A chia hết cho 13 nhưng không chia hết cho 5
a) \(M=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow M=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow M=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow M=2.31+...+2^{96}.31\)
\(\Rightarrow M=\left(2+...+2^{96}\right).31⋮31\)
\(\Rightarrow M⋮31\)
b) \(M=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2M=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2M-M=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow M=2^{101}-2\)
a) M = 2 + 22 + 23 + ... + 2100
= (2+22+23+24+25) + (26+27+28+29+210) + ... + (296+297+298+299+2100)
= 2(1+2+22+23+24) + 26(1+2+22+23+24) + ... + 296(1+2+22+23+24)
= 31(2+26+...+296) \(⋮\) 31
b) M = 2 + 22 + ... + 2100
=> 2M = 22 + 23 + ... + 2101
=> 2M - M = 2101 - 2
=> M = 2101 - 2
Ta có
M=3 +32+33+....+399+3100
=> \(.M=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
=> \(M=12\left(1\right)+12\left(9\right)+...+12\left(...\right)\)
=> M chia hết cho 12 ( cái cuối bạn tự tính đi mình ko muốn tính :) )
cái còn lại tự làm tương tự thôi