Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáp số cuối cùng là 0 vì 1-1/4 = 0/4 = 0 x cho những số nào khác cũng bằng 0 thôi
\(\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times\left(1-\frac{1}{16}\right)\times...\times\left(1-\frac{1}{10000}\right)\)
\(=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{999}{10000}\)
\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times...\times\frac{99\times101}{100\times100}\)
\(=\frac{1}{2}\times\frac{101}{100}\)
\(=\frac{101}{200}\)
D=1/2-1/32=15/32
E=1/1X2+1/2X3+1/3X4+1/4X5+1/5X6
E=1/1-1/6=5/6
K MÌNH NHA
Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(\Rightarrow2A-A=1-\frac{1}{32}\)
\(\Rightarrow A=\frac{31}{32}\)
1/2+1/4+1/8+1/16+1/32=1/2+(1/2-1/4)+(1/4-1/8)+(1/16-1/32)
=1/2-1/32
=15/32
\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\)\(-\frac{1}{64}\)
\(=1-\frac{32}{64}-\frac{16}{64}-\frac{8}{64}-\frac{4}{64}\)\(-\frac{2}{64}-\frac{1}{64}\)
\(=1-\left(\frac{32}{64}-\frac{16}{64}-\frac{8}{64}-\frac{4}{64}-\frac{2}{64}-\frac{1}{64}\right)\)
\(=1-\frac{1}{64}\)
\(=\frac{64}{64}-\frac{1}{64}\)
\(=\frac{63}{64}\)
C = 8/9 x 15/16 x 24/25 x ... x 99/100
= 2.4/3.3 x 3.5/4.4 x 4.6/5.5 x ... x 9.11/10.10
= (2.3.4...9) x (4.5.6...11) / (3.4.5...10) x (3.4.5...10)
Gian uoc ta co
= 2.11/10.4
= 11/20
a) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\) (dấu chấm là dấu nhân)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
b) \(\frac{19}{13}+\frac{14}{6}+\frac{1}{9}+\frac{4}{6}+\frac{7}{13}+\frac{17}{9}\)
\(=\left(\frac{19}{13}+\frac{7}{13}\right)+\left(\frac{14}{6}+\frac{4}{6}\right)+\left(\frac{1}{9}+\frac{17}{9}\right)\)
= 2 + 3 + 2
= 7
4-\(\frac{4}{9}\)- [\(2\frac{1}{4}\)+1\(\frac{4}{9}\)]
=\(4-\frac{4}{9}-2\frac{1}{4}-1\frac{4}{9}\)
=\(\left(4-2\frac{1}{4}\right)-\left(\frac{4}{9}-1\frac{4}{9}\right)\)
=\(1\frac{3}{4}-\left(-1\right)\)
=\(2\frac{3}{4}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
M = \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}.\right)\left(1-\frac{1}{16}\right)....\left(1-\frac{1}{10000}\right)\)
\(=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}=\frac{3.8.15...9999}{4.9.16....10000}=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right)....\left(99.101\right)}{\left(2.2\right).\left(3.3\right).\left(4.4\right)....\left(100.100\right)}\)
\(=\frac{\left(1.2.3...99\right).\left(3.4.5..101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=\frac{1.101}{100.2}=\frac{101}{200}\)