Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(e ) Để \) \(M\)\(\in\)\(Z \) \(thì\) \(1 \)\(⋮\)\(x +3\)
\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }
\(Lập\) \(bảng :\)
\(x +3\) | \(1\) | \(- 1\) |
\(x\) | \(-2\) | \(- 4\) |
\(Vậy : Để \) \(M\)\(\in\)\(Z\) \(thì\) \(x\)\(\in\){ \(- 4 ; - 2\) }
e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)
<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}
Lập bảng:
x + 3 | 1 | -1 |
x | -2 | -4 |
Vậy ....
f) Ta có: M > 0
=> \(\frac{1}{x+3}\) > 0
Do 1 > 0 => x + 3 > 0
=> x > -3
Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2
a)Ta có : \(4x^2=1\)
\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào B , ta được:
\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)
Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)
b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)
\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)
\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)
\(=\frac{x}{x+1}\)
Vậy \(M=\frac{x}{x+1}\)
c)Ta có: \(x< x+1\forall x\)
\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)
Vậy với mọi \(x\ne-1\)thì \(M< 1\)
\(M=\frac{x^3+26x-19}{x^2+2x-3}-\frac{2x}{x-1}+\frac{x-3}{x+3}\)
\(=\frac{x^3+26x-19}{\left(x-1\right)\left(x+3\right)}-\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+3\right)}\)
\(=\frac{x^3+26x-19-2x^2-6x+x^2-4x+3}{\left(x-1\right)\left(x+3\right)}\)
\(=\frac{x^3-x^2+16x-16}{\left(x-1\right)\left(x+3\right)}=\frac{x^2\left(x-1\right)+16\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(=\frac{\left(x^2+16\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+16}{x+3}\)