\(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}>1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

tham khảo:        Câu hỏi của Nguyễn Thùy Trang     

https://olm.vn/hoi-dap/detail/240354680477.html

10 tháng 12 2016

b/ không mất tính tổng quát ta giả sử: a = b + c thì

\(\frac{a^2+b^2-c^2}{2ab}=\frac{b^2+2bc+c^2-c^2}{2\left(b+c\right)b}=\frac{2b^2+2bc}{2b^2+2bc}=1\)

Tương tự

\(\frac{c^2+a^2-b^2}{2ac}=\frac{2c^2+2ac}{2c^2+2ac}=1\)

\(\frac{b^2+c^2-a^2}{2bc}=\frac{-2bc}{2bc}=-1\)

Vậy trong ba số luôn có 2 số = 1 và 1 số = - 1

10 tháng 12 2016

\(\frac{a^2+b^2-c^2}{2ab}+\frac{-a^2+b^2+c^2}{2bc}+\frac{a^2-b^2+c^2}{2ca}=1\)

\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-2abc-a^3-b^3-c^3=0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)=0\)

\(\Leftrightarrow a=b+c\)hoặc \(b=a+c\)hoặc \(c=a+b\)

Vậy trong 3 số có 1 số bẳng tổng 2 số kia

8 tháng 2 2021

\(ĐK:a,b,c\ne0\)

Ta có: \(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)\(\Leftrightarrow\left(\frac{b^2+c^2-a^2}{2bc}+1\right)+\left(\frac{c^2+a^2-b^2}{2ca}-1\right)+\left(\frac{a^2+b^2-c^2}{2ab}-1\right)=0\)\(\Leftrightarrow\frac{\left(b+c\right)^2-a^2}{2bc}+\frac{\left(c-a\right)^2-b^2}{2ca}+\frac{\left(a-b\right)^2-c^2}{2ab}=0\)\(\Leftrightarrow\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}+\frac{\left(c-a-b\right)\left(b+c-a\right)}{2ca}-\frac{\left(a-b+c\right)\left(b+c-a\right)}{2ab}=0\)\(\Leftrightarrow\left(b+c-a\right)\frac{a\left(a+b+c\right)+b\left(c-a-b\right)-c\left(a-b+c\right)}{2abc}=0\)\(\Leftrightarrow\frac{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}{2abc}=0\)

Trường hợp 1: \(b+c-a=0\)thì

+) \(\frac{\left(b+c\right)^2-a^2}{2bc}=\frac{\left(b+c-a\right)\left(a+b+c\right)}{2bc}=0\Rightarrow\frac{b^2+c^2-a^2}{2bc}=-1\)

+) \(\frac{\left(a-b\right)^2-c^2}{2ab}=\frac{\left(a-b-c\right)\left(a+c-b\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=1\)

\(\Rightarrow\frac{c^2+a^2-b^2}{2ca}=1\)

Điều này chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1

Trường hợp 2: \(c+a-b=0\) thì 

+) \(\frac{\left(a-b\right)^2-c^2}{2ab}=\frac{\left(a-b-c\right)\left(a+c-b\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=1\)

+) \(\frac{\left(c+a\right)^2-b^2}{2ca}=\frac{\left(c+a-b\right)\left(c+a+b\right)}{2ca}=0\Rightarrow\frac{c^2+a^2-b^2}{2ca}=-1\)

\(\Rightarrow\frac{b^2+c^2-a^2}{2bc}=1\)

Điều này cũng chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1

Trường hợp 3: \(a+b-c=0\)

+) \(\frac{\left(c-a\right)^2-b^2}{2ca}=\frac{\left(c-a-b\right)\left(c-a+b\right)}{2ca}=0\Rightarrow\frac{c^2+a^2-b^2}{2ca}=1\)

+) \(\frac{\left(a+b\right)^2-c^2}{2ab}=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=-1\)

\(\Rightarrow\frac{b^2+c^2-a^2}{2bc}=1\)

Điều này cũng chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1 (đpcm)

8 tháng 2 2021

cho mình hỏi tại sao từ

\(\left(b+c-a\right)\cdot\frac{a\left(a+b+c\right)+b\left(c-a-b\right)-c\left(a-b+c\right)}{2abc}=0\)

lại có thể suy ra được

\(\frac{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}{2abc}=0\) vậy ?

25 tháng 1 2020

a,

Đặt: \(\hept{\begin{cases}\frac{a^2+b^2-c^2}{2ab}=x\\\frac{b^2+c^2-a^2}{2bc}=y\\\frac{c^2+a^2-b^2}{2ac}=z\end{cases}}\)

a, Ta chứng minh \(x+y+z>1\)hay \(x+y+z-1>0\left(1\right)\)

Ta có BĐT \(\left(1\right)\Leftrightarrow\left(x+1\right)+\left(y-1\right)+\left(z-1\right)>0\left(2\right)\)

Ta có: \(x+1=\frac{a^2+b^2-c^2}{2ab}+1=\frac{\left(a+b\right)^2-c^2}{2ab}=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}\)

Và: \(y-1=\frac{b^2+c^2-a^2}{2bc}-1=\frac{\left(b-c\right)^2-a^2}{2bc}=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}\)

Và: \(z-1=\frac{c^2+a^2-b^2}{2ac}-1=\frac{\left(c-a\right)^2-b^2}{2ac}=\frac{\left(c-a-b\right)\left(c-a+b\right)}{2ac}\)

\(\left(2\right)\Leftrightarrow\left(a+b-c\right)\left[\frac{c\left(a+b+c\right)+a\left(b-c-a\right)-b\left(c-a+b\right)}{2abc}\right]>0\)

\(\Leftrightarrow\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]>0\left(abc>0\right)\)

\(\Leftrightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)>0\)

BĐT cuối đúng vì \(a,b,c\)thỏa mãn \(BĐT\Delta\left(đpcm\right)\)

b, Để \(A=1\Leftrightarrow\left(z+1\right)+\left(y-1\right)+\left(z-1\right)=0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)=0\)

Từ trên ta suy ra được 3 trường hợp:

  • Trường hợp 1: \(a+b-c=0\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\\z-1=0\end{cases}}\hept{\Rightarrow\begin{cases}x=-1\\y=-1\\z=1\end{cases}}\)
  • Trường hợp 2:\(a-b+c=0\Rightarrow\hept{\begin{cases}x-1=\frac{\left(a-b-c\right)\left(a-b+c\right)}{2ab}=0\\y-1=0\\z+1=\frac{\left(c+a-b\right)\left(c+a+b\right)}{2ca}\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\\z=-1\end{cases}}\)
  • Trường hợp 3: \(-a+b+c=0\Rightarrow\hept{\begin{cases}x-1=0\\y+1=\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-1\\z=1\end{cases}}}\)

Từ các trường trên ta thấy trường hợp nào cũng có 2 trong 3 phân thức \(x,y,z=1\)và còn lại \(=-1\)

4 tháng 4 2016

có ai trả lời đc giúp mình với

28 tháng 9 2019

a. ĐK: a, b, c khác 0.

 \(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}=1\)

\(\Leftrightarrow\left[\frac{a^2+b^2-c^2}{2ab}-1\right]+\left[\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}\right]=0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{1}{2c}\left[\frac{c^2-\left(a^2-b^2\right)}{b}+\frac{c^2+\left(a^2-b^2\right)}{a}\right]=0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{1}{2c}\left[\frac{c^2\left(a+b\right)-\left(a^2-b^2\right)\left(a-b\right)}{ab}\right]=0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{2abc}=0\)

\(\Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left(1-\frac{a+b}{c}\right)=0\)

\(\Leftrightarrow\left(a-b-c\right)\left(a-b+c\right)\left(c-a-b\right)=0\)

\(\Leftrightarrow a=b+c\)hoặc \(b=a+c\)hoặc \(c=a+b\).

b) Không mất tính tổng quả. G/s: a = b + c

Khi đó ta có:

\(\frac{a^2+b^2-c^2}{2ab}=\frac{\left(b+c\right)^2+b^2-c^2}{2\left(b+c\right)b}=1\)

\(\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-\left(b+c\right)^2}{2bc}=-1\)

\(\frac{c^2+a^2-b^2}{2ca}=\frac{c^2+\left(b+c\right)^2-b^2}{2\left(b+c\right)c}=1\)

=> Điều phải chứng minh.