Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{\frac{AM}{A_1M}}+\sqrt{\frac{BM}{B_1M}}+\sqrt{\frac{CM}{C_1M}}=\sqrt{\frac{S_2+S_3}{S_1}}+\sqrt{\frac{S_1+S_3}{S_2}}+\sqrt{\frac{S_1+S_2}{S_3}}\)
\(\ge\sqrt{\frac{\left(\sqrt{S_2}+\sqrt{S_3}\right)^2}{2S_1}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_3}\right)^2}{2S_2}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_2}\right)^2}{2S_3}}\)
\(=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{S_2}+\sqrt{S_3}}{\sqrt{S_1}}+\frac{\sqrt{S_1}+\sqrt{S_3}}{\sqrt{S_2}}+\frac{\sqrt{S_1}+\sqrt{S_2}}{\sqrt{S_3}}\right)\frac{1}{2}\cdot6=3\sqrt{2}\)
Dấu "=" xảy ra khi S1 =S2=S3 <=> M là trọng tâm \(\Delta ABC\)
Từ A dựng đường cao AH, M dựng đường cao MD ( H, D thuộc BC )
\(\left(S_{MAB};S_{MBC};S_{MAC}\right)\rightarrow\left(S_1;S_2;S_3\right)\)
\(\Delta HAA_1\) có \(AH//MD\left(\perp BC\right)\) áp dụng Ta-let \(\Rightarrow\)\(\frac{AA_1}{MA_1}=\frac{AH}{MD}=\frac{\frac{1}{2}AH.BC}{\frac{1}{2}MD.BC}=\frac{S_{ABC}}{S_2}\)
\(\Rightarrow\)\(\frac{AA_1}{MA_1}-1=\frac{MA}{MA_1}=\frac{S_{ABC}}{S_2}-1=\frac{S_1+S_3}{S_2}\)
Tương tự( dựng các đường cao hạ từ B, M và C, M ) ta cũng có: \(\frac{MB}{MB_1}=\frac{S_1+S_2}{S_3};\frac{MC}{MC_3}=\frac{S_2+S_3}{S_1}\)
Do đó: \(P=\frac{MA}{MA_1}.\frac{MB}{MB_1}.\frac{MC}{MC_1}=\frac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1S_2S_3}\)
\(\ge\frac{2\sqrt{S_1S_2}.2\sqrt{S_2S_3}.2\sqrt{S_3S_1}}{S_1S_2S_3}=\frac{8\sqrt{\left(S_1S_2S_3\right)^2}}{S_1S_2S_3}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\) tam giác ABC là tam giác đều và có 3 đường trung trực đồng quy tại M
Gọi O là tâm đường tròn bàng tiếp trong góc A.Ta có:
\(S_{OAC}+S_{OAB}-S_{OBC}=S_{ABC}\Rightarrow b.r_a+c.r_a-a.r_a=2S\Rightarrow S=\frac{r_a\left(b+c-a\right)}{2}=r_a\left(p-a\right).\)(p là nửa chu vi tam giác ABC)
Cm tương tự: \(S=r_a\left(p-a\right)=r_b\left(p-b\right)=r_c\left(p-c\right)=p.r\)
\(\Rightarrow\frac{S}{r_a}+\frac{S}{r_b}+\frac{S}{r_c}=p-a+p-b+p-c=3p-2p=p=\frac{S}{r}\Rightarrow\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)(đpcm)
Đặt BC=a, AC=b, AB=c
\(P=\frac{a+b+c}{2}\)
S là diện tích của tam giác ABC
Ta có công thức tính bán kính của các đường tròn bàng tiếp:
Tại góc A: \(r_a=\frac{S}{P-a}\)
Tại góc B: \(r_b=\frac{S}{P-b}\)
Tại góc C: \(r_c=\frac{S}{P-c}\)
Công thức tính bán kính đường tròn nội tiếp tam giác ABC:
\(r=\frac{S}{P}\)
=> \(\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{P-a}{S}+\frac{P-b}{S}+\frac{P-c}{S}=\frac{3P}{S}-\frac{a+b+c}{S}\)
\(=\frac{3P}{S}-\frac{2P}{S}=\frac{P}{S}=\frac{1}{r}\)
\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\left(a+b+c\right)=p=\frac{S}{r}\)
\(\Rightarrow\frac{1}{r}=\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\)
Học tốt!!!!!!!!!!!!!!!!