K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(M=a^2+3a+1=a\left(a+3\right)+1\)

- Nếu a chẵn thì a(a+3) chẵn => a(a+3) + 1 lẻ => M là số lẻ

- Nếu a lẻ thì a+3 chẵn => a(a+3) chẵn => a(a+3) + 1 lẻ => M là số lẻ

Như vậy với mọi a thì M lẻ nên mọi ước của M đều là số lẻ.

2 tháng 1 2018

a) Giả sử ước của M là số chẵn thì \(M=2.k\Leftrightarrow a^2+3a+1=2k\)

Ta thấy \(a^2+3a+1=a\left(a+1\right)+2a+1\)

a(a + 1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2. Vậy thì a(a + 1) + 2a chia hết cho 2.

Vì 2k chia hết cho 2, a(a + 1) + 2a cũng chia hết cho 2 nên 1 chia hết 2 (vô lý)

Vậy nên mọi ước của M đều là số lẻ.

b) Đặt \(a=5u+v\left(u\in N;0\le v\le4\right)\)

Khi đó \(M=\left(5u+v\right)^2+3\left(5u+v\right)+1\)

\(=25u^2+10uv+v^2+15u+3v+1\)

\(=\left(25u^2+10uv+15u\right)+v^2+3v+1\)

Để M chia hết 5 thì \(v^2+3v+1⋮5\)

Với \(0\le v\le4\), ta thấy chỉ có v = 4 là thỏa mãn.

Vậy \(a=5u+4\left(u\in N\right)\) 

c) Để M là lũy thừa của 5 thì \(a=5u+4\left(u\in N\right)\)

\(\Rightarrow M=\left(5u+4\right)^2+3\left(5u+4\right)+1\)

Với n chẵn, a có tận cùng là chữ số 4. Vậy thì M có tận cùng  là chữ số 9

Vậy không thể là lũy thừa của 5.

Với n lẻ, a có tận cùng là chữ số 9. Vậy thì M có tận cùng là chữ số 9

Vậy không thể là lũy thừa của 5.

Vậy không tồn tại số a để M là lũy thừa của 5.

2 tháng 1 2018

đây là đề thi tuyển sinh lớp 10 chuyên trường PTNK-ĐHQG-TP.Hồ Chí Minh(vòng 2) năm 2013-2014 ak

29 tháng 8 2019

Cầ gấp, cần gấp. Cao nhân nào đi qua xin chỉ giáo dùm

17 tháng 4 2020

Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình. 
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\ \)

Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)

Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))

Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)

\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)

Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))

Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)

Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)

Từ (1), (2) và (3) => ĐPCM

Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)

\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

1 tháng 7 2017

Hình như thiếu đề nên cho cả n là số tự nhiên khác 0 nữa.

Xét n = 1 thì ta có:

\(m^2-1=\left(2x+1\right)^2-1=4\left(x^2+x\right)⋮8\)

Giả sử nó đúng tới n = k

\(\Rightarrow m^{2^k}-1=a.2^{k+2}=ay\)

\(\Rightarrow m^{2^k}=ay+1\)

Ta chứng minh nó đúng với n = k + 1

Hay \(\Rightarrow m^{2.2^k}-1⋮2^{k+2+1}\)

\(\Rightarrow\left(ay+1\right)^2-1⋮2y\)

Ta có: \(\left(ay+1\right)^2-1=a^2y^2+2ay\)

Mà \(\hept{\begin{cases}a^2y^2⋮2y\\2ay⋮2y\end{cases}}\)(do y là số chẵn)

\(\Rightarrow\)Nó đúng với n = k + 1.

Vậy theo quy nạp ta có điều phải chứng minh.

15 tháng 8 2019

Tham khảo:

https://diendantoanhoc.net/topic/110789-chứng-minh-nếu-p4-là-ước-của-a2b2-và-aab2-thì-p4-cũng-là-ước-của-aab/

17 tháng 8 2019

cảm ơn bạn

5 tháng 4 2019

a, Với m = -1 thì \(\hept{\begin{cases}\left(P\right)y=-x^2\\\left(d\right)y=x-2\end{cases}}\)

Tọa độ giao điểm của (d) và (P) là nghiệm của hệ phương trình : 

\(\hept{\begin{cases}y=-x^2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}-x^2=x-2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=x-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-4\end{cases}}}\)

Vậy tọa độ giao điểm (d) và (P) với m = -1 là (1;-1) ; (-2;-4)

b, Phương trình hoành độ giao điểm của (d) và (P) là

\(mx^2=\left(m+2\right)x+m-1\)

\(\Leftrightarrow mx^2-\left(m+2\right)x-m+1=0\)

Vì m khác 0 nên pt trên là pt bậc 2

Khi đó \(\Delta=\left[-\left(m+2\right)\right]^2-4m\left(-m+1\right)\)

               \(=m^2+4m+4+4m^2-4m\)

               \(=5m^2+4>0\)

Nên pt trên luôn có 2 nghiệm p/b

hay (d) luôn cắt (P) tại 2 điểm phân biệt với m khác 0