Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
F = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
F = \(\frac{1}{3}-\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{1}{7}-\frac{1}{7}\right)-\left(\frac{1}{9}-\frac{1}{9}\right)-...-\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
F = \(\frac{1}{3}-\frac{1}{99}\)
F = \(\frac{32}{99}\)
\(F=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)
\(\Rightarrow F=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\)
\(\Rightarrow F=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow F=\frac{32}{99}\)
Từ bài <=>M = 1/3 - 1/5+1/5-1/7+1/7-1/9+...+1/97-1/99=1/3-1/99=32/99
M = \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)
M = ( \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\))
M = \(\frac{1}{3}-\frac{1}{99}\)
M = \(\frac{32}{99}\)
M = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ..... + 1/97 - 1/99
M = 1/3 - 1/99
M = 32/99
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
M=(1/3-1/5)+(1/5+1/7)+...+(1/97+1/99)
M=1/3+(1/5-1/5)+...+(1/97-1/97)-1/99
M=1/3-1/99
M=32/99
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2\cdot\dfrac{98}{303}=\dfrac{196}{303}\)
2/3.5+ 2 /5.7+ 2/7.9+...+ 2/97.99
=1/3 - 1/5 + 1/5 - 1 /7 +.... + 1/97 - 1/99
=1/3 - 1/99
=32/99
m=/3.5+2/5.7+2/7.9+.....+2/97.99
=m=1/3-1/5+1/5-1/7+.......+1/97-1/99
m=1/3-1/99
=32/99
ta co M =2/3.5+2/5.7+...+2/97.99
=1/3-1/5+1/5-1/7+...+1/97-1/99
=1/3-1/99=32/99
vay M =32/99
\(M=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
có bài toán nào nũa cứ hỏi mình mình sẽ giải đáp