Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)
\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)
\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)
Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
??????????????????????????????????????????????????????????????????????????????????????????????????????????????
Ta có : M = 2 + 22 + 23 + 24 + .... + 22017 + 22018
=> 2M = 22 + 23 + 24 + 25 + .... + 22018 + 22019
=> 2M - M = ( 22 + 23 + 24 + 25 + .... + 22018 + 22019 ) - (2 + 22 + 23 + 24 + .... + 22017 + 22018 )
=> M = 22019 - 2
b) Lại có M = 2 + 22 + 23 + 24 + .... + 22017 + 22018
= (2 + 22) + (23 + 24) + .... + (22017 + 22018)
= 2(2 + 1) + 23(2 + 1) + ... + 22017(2 + 1)
= (2 + 1)(2 + 23 + .... + 22017)
= 3(2 + 23 + .... + 22017)
=> M \(⋮\)3 (ĐPCM)
a)đề \(\Rightarrow2M=2^2+2^3+2^4+...+2^{2019}
\Rightarrow M=2^{2019}-2\)
b)đề \(\Rightarrow M=(2+2^2)+(2^3+2^4)+...+(2^{2017}+2^{2018})\)
\(\Rightarrow M=2.3+3.\left(2^3\right)+3.2^4+...+3.2^{2017}\)
\(\Rightarrow M⋮3\left(đpcm\right)\)
=>2M=2^2+2^3+2^4+2^5+........+2^2018+2^2019
M=2M-M
=>M=(2^2+2^3+.........+2^2019)-(2+2^2+.............+2^2018)
=>M=2^2019-2
\(M=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\) (1)
\(\Rightarrow2M=2\left(2+2^2+2^3+2^4+...2^{2017}+2^{2018}\right)\)
\(\Rightarrow2M=2^2+2^3+2^4+2^5...+2^{2019}\) (2)
Lấy (2) - (1) , ta có :
\(2M=2^2+2^3+2^4+...+2^{2019}-M=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow M=2^{2019}-2\)
Ta có : 2M = 2 +\(\frac{3}{2}\)+\(\frac{4}{2^2}\)+...+\(\frac{2017}{2^{2015}}\)+ \(\frac{2018}{2^{2016}}\)
2M - M = 2 + \(\frac{3}{2}\)- \(\frac{2}{2}\)+ \(\frac{4}{2^2}\)-\(\frac{3}{2^2}\)+...+\(\frac{2017}{2^{2015}}\)-\(\frac{2016}{2^{2015}}\)+ \(\frac{2018}{2^{2016}}\)-\(\frac{2017}{2^{2016}}\)-\(\frac{2018}{2^{2017}}\)
M = 2 + \(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{2015}}\)+ \(\frac{1}{2^{2016}}\)-\(\frac{2018}{2^{2017}}\)
Đặt N = \(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{2016}}\)
Ta có :2N = 1 + \(\frac{1}{2}\)+\(\frac{1}{2^2}\)+ .....+\(\frac{1}{2^{2015}}\)
2N - N = 1\(\frac{1}{2^{2016}}\)
Vậy N < 1
Nên M < 2 + 1 - \(\frac{2018}{2^{2017}}\)= 3 -\(\frac{2018}{2^{2017}}\)
Vậy M < 3
a) \(M=2+2^2+2^3+...+2^{2017}+2^{2018}\)
\(2M=2^2+2^3+2^4+...+2^{2018}+2^{2019}\)
\(2M-M=2^{2019}+2^{2018}-2^{2018}+2^{2017}-2^{2017}+...+2^2-2^2-2\)
\(M=2^{2019}-2\)
b) Từ câu a); hiển nhiên là 2 chia 3 dư 2.
Xét \(2^2\div3\); ta được 4 : 3 dư 1.
Xét \(2^3\div3\); ta được 8 : 3 dư 2.
Xét \(2^4\div3\); ta được 16 : 3 dư 1.
...
Dãy số tìm được khi lấy 2n chia cho 3 ( với n > 0 ) là 2; 1; 2; 1; ...
Mà 2019 : 2 dư 1 nên số dư của \(2^{2019}\div3\) là 2.
Vậy \(2^{2019}-2\equiv\left(3-3\right)mod3\equiv0mod3\)
Hoặc M chia hết cho 3 ( đpcm )
giải
a, M =2+2^2+2^3+...+2^2017+2^2018
2*M=2^2+2^3+...+2^2018+2^2019
2*M-M=(2^2+2^3+...=2^2019)-(2+2^2+2^3+...+2^2018)
2*M=2^2019+2
M=(2^2019+2)/2
M=2018^2-2017^2+2016^2-2015^2+............+2^2-1^2
M=(2018+2017).(2018-2017)+(2016+2015).(2016-2015)+...........+(2+1).(2-1)
M=2018+2017+2016+2015+.................+2+1
M=2018.(2018+1)/2=2018.2019/2
M=1009.2019M=2037171
a) M=2+22+23+24+....+22017+22018
=> 2M=2(2+22+23+24+....+22017+22018)
=> 2M=22+23+24+25+....+22018+22019
=> 2M-M=22019-2
b) M=2+22+23+24+....+22017+21018
=> M=(2+22)+(23+24)+....+(22017+22018)
=> M=2(1+2)+23(1+2)+....+22017(1+2)
=> M=2.3+23.3+....+22017.3
=> M=3(2+23+.....+22017)
=> M chia hết cho 3
a, M= 2 + 2^2 + 2^3 +....+ 2^2018
2M= 2^2 + 2^3 + 2^4 +...+ 2^2019
2M-M= ( 2^2 + 2^3 + 2^4 +....+ 2^2019) - ( 2+ 2^2 + 2^3 +...+ 2^2018)
M= 2^2019 - 2
b, Tổng trên có 2018 số, nhóm mỗi nhóm 2 số, ta có:
M= (2 + 2^2) + (2^3 + 2^4) +...+ (2^2017 + 2^2018)
M= 2(1+2) + 2^3(1+2) +...+ 2^2017(1+2)
M= 2. 3 + 2^3.3 +...+ 2^2017.3
M= 3( 2 + 2^3 +...+ 2^2017) chia hết cho 3
Vậy M chia hết cho 3
\(a,\)\(M=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\)
\(2M=2^2+2^3+2^4+2^5+....+2^{2018}+2^{2019}\)
\(M=2^{2019}-2\)
\(b,\)\(M=2+2^2+2^3+2^4+....+2^{2017}+2^{2018}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{2017}+2^{2018}\right)\)
\(=2\left(2+1\right)+2^3\left(2+1\right)+....+2^{2017}\left(2+1\right)\)
\(=3\left(2+2^3+...+2^{2017}\right)⋮3\)
2M=2^2+2^3+...+2^2019
=>2M-M=2^2+2^3+...+2^2019-2-2^2-...-2^2018
=>M=2^2019-2