Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tự vẽ hình nhá!!
a) Xét tam giác EAM và tam giác CBM có:
MA = MB (gt)
góc EMA = góc BMC ( 2 góc đối đỉnh)
ME = MC (gt)
=> tam giác EAM = tam giác CBM (c-g-c)
=> EA = BC (2 cạnh tương ứng)
góc EAM = góc CBM (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> EA II BC
b) Xét tam giác ADN và tam giác CBN có:
NB = ND (gt)
góc AND = góc BNC (2 góc đối đỉnh)
NA = NC (gt)
=> tam giác ADN = tam giác CBN (c-g-c)
=> DA = BC (2 cạnh tương ứng)
góc ADN = tam giác CBN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong => DA II BC
c) Ta có: EA = BC (theo a)
DA = BC (theo b)
=> EA = DA => A là trung điểm của DE
Ta có:
ab = bc
\(\Rightarrow\) a = c (1)
bc = cd
\(\Rightarrow\) b = d (2)
cd = de
\(\Rightarrow\) c = e (3)
de = ea
\(\Rightarrow\) d = a (4)
ea = ab
\(\Rightarrow\) e = b (5)
Từ (1), (2), (3), (4), (5) \(\Rightarrow\) a = b = c = d = e
\(\Rightarrow\) ĐPCM
a. Xét 2\(\Delta\): ABE và DEC có:
\(\left\{{}\begin{matrix}AE=ED\left(gt\right)\\\widehat{AEB}=\widehat{CED}\left(đối.đỉnh\right)\\BE=EC\left(gt\right)\end{matrix}\right.\)
Vậy \(\Delta ABE=\Delta DEC\left(c.g.c\right)\)
b. Do \(\Delta ABE=\Delta DEC\)
\(\Rightarrow\widehat{ABE}=\widehat{DCE}\)
\(\Rightarrow\) AB // CD
c. Ta có: AE là điểm nối từ đỉnh tam giác vuông tới trung điểm cạnh huyền
\(\Rightarrow AE=ED=BE=EC\)
\(\Rightarrow AD=BC\)
Xét 2\(\Delta\): ACD và ABC có:
\(\left\{{}\begin{matrix}AC.chung\\CD=AB\left(theo.câu.a\right)\\AD=BC\left(CMT\right)\end{matrix}\right.\)
Vậy \(\Delta ACD=\Delta ABC\left(c.c.c\right)\)
d. Xét tương tự với 2\(\Delta\) ABC và ABD ta được: \(\Delta ABC=\Delta ABD\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
Mà: \(\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{ABD}=90^o\)
Vậy tam giác CBC là tam giác vuông
a)Xét tam giác AEB và tam giác DEC có
AE=DE(gt)
góc AEB = góc DEC ( đối đỉnh)
EB=EC(E là trung điểm BC)
Vậy tam giác AEB = tam giác DEC(c.g.c)
b từ 2 tg trên = nhau
=>góc ABE = góc ECD
=>AB//CD
Vậy AB//CD
c)Xét tam giác ACD và tam giác DBA có
góc ACD = góc DBA(= 90 độ)
AB=CD(2 tg phần a = nhau)
AD chung
Vậy tam giác ACD = tam giác DBA( cạnh huyền,cạnh góc vuông)
d)từ 2 tam giác trên bằng nhau
=> góc BAC = góc BDC
=> góc BDC = 90 độ
=> tam giác DBC vuông tại D
A B C D H E M
a) Xét tam giác ABC ta có
BC2=52=25
AB2+AC2=25
->BC2=AC2+AB2->tam giác ABC vuông tại A ( đinh lý pitago đảo)
b) xét tam giác BAD và tam giác EDA ta có
BD=AE (gt)
AD=AD ( cạnh chung)
góc BDA = góc EAD ( 2 góc sole trong và AE//BD)
-> tam giac BAD= tam giac EDA (c-g-c)
=> AB=DE ( 2 cạnh tương ứng)
c)ta có
góc CAD+ góc BAD =90 (2 góc kề phụ)
góc CDA+ góc DAH=90 ( tam giác ADH vuông tại H)
góc BAD=góc DAH ( AD là tia p./g góc BAH)
->góc CAD=góc CDA
-> tam giác ADC cân tại C
d) Xét tam giác ADC cân tại C ta có
CM là đường trung tuyến ( M là trung điểm AD)
-> CM là đường cao
ta có
góc BAD= góc ADE ( tam giác BAD= tam giác EDA)
mà 2 góc nằm ở vị trí sole trong nên AB//DE
mặt khác AB vuông góc AC ( tam giác ABC vuông tại A)
do đó DE vuông góc AC
Gọi F là giao điểm DE và AC
Xét tam giác CAD ta có
DF là đường cao (DE vuông góc AC tại F)
AH là đường cao (AH vuông góc BC)
AH cắt DE tại I (gt)
-> I là trực tâm
mà CM cũng là đường cao tam giác ACD (cmt)
nên CM đi qua I
-> C,M ,I thẳng hàng
a. Vì BD là tia phân giác góc ABE
=> góc ABD = góc EBD
Xét tam giác ABD và tam giác EBD:
BA = BE
góc ABD = góc EBD
BD chung
=> tam giác ABD = tam giác EBD (c-g-c)
=> DA = DE (2 cạnh tương ứng)
b,c. ko có điểm F nên ko chứng minh được