Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:\(-\log\left[H^+\right]=6.1\Leftrightarrow-\log x=6,1\)
b) Phương trình vừa tìm được có ẩn là x và nằm ở vị trí hệ số của logarit
Với \(pH=-log\left[H^+\right]\),ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=\dfrac{d}{d\left[H^+\right]}\left(-log\left[H^+\right]\right)\)
Sử dụng quy tắc tính đạo hàm của hàm hợp, ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=-1.\dfrac{d}{d\left[H^+\right]}\left(log\left[H^+\right]\right)\)
Áp dụng công thức đạo hàm của hàm số logarit tổng quát, ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=-1.\dfrac{1}{\left[H^+\right]ln10}\)
Vậy tốc độ thay đổi của \(pH\) đối với nồng độ \(\left[H^+\right]\) là:
\(\dfrac{dpH}{d\left[H^+\right]}=-\dfrac{1}{\left[H^+\right]ln10}\)
Mẫu 1 có độ pH là:
\(pH=-log\left[H^+\right]=-log\left(8\cdot10^{-7}\right)=-log8+7=-3log2+7\)
Mẫu 2 có độ pH là:
\(pH'=-log\left[H^+\right]=-log\left(2\cdot10^{-9}\right)=-log2+9\)
Ta có:
\(pH-pH'=-3log2+7+log2-9=-2log2-2< 0\\ \Rightarrow pH< pH'\)
Mẫu 2 có độ pH lớn hơn mẫu 1.
\(a,pH_A=1,9\Leftrightarrow-log\left[H^+\right]=1,9\Leftrightarrow H^+=10^{-1,9}\)
Vậy độ acid của dung dịch A là \(10^{-1,9}mol/L\)
\(pH_B=2,5\Leftrightarrow-log\left[H^+\right]=2,5\Leftrightarrow H^+=10^{-2,5}\)
Vậy độ acid của dung dịch B là \(10^{-2,5}mol/L\)
Ta có: \(\dfrac{H^+_A}{H_B^+}=\dfrac{10^{-1,9}}{10^{-2,5}}\approx398\)
Vậy độ acid của dung dịch A cao hơn độ acid của dung dịch B 3,98 lần.
b, Ta có:
\(6,5< pH< 6,7\\ \Leftrightarrow6,5< -log\left[H^+\right]< 6,7\\ \Leftrightarrow-6,7< log\left[H^+\right]< -6,5\\ \Leftrightarrow10^{-6,7}< H^+< 10^{-6,5}\)
Vậy nước chảy từ vòi nước có độ acid từ \(10^{-6,7}mol/L\) đến \(10^{-6,5}mol/L\)
Như vậy, nước đó có độ acid cao hơn nước cất.
tham khảo
Ta có:
\(pH=-logx\Leftrightarrow6,5=-logx\Leftrightarrow logx=-6,5\Leftrightarrow x=10^{-6,5}\approx3,16.10^{-77}\)
Vậy nồng độ \(H^+\) của sữa bằng \(3,16.10^{-7}\) mol/L.
pH=-log[H+]
Nồng độ ion hydro khi pH=8 là \(\left[H^+\right]=10^8\)(mol/lít)
a)Độ pH của nước cất là:
\(pH=-log\left[H^+\right]=-log\left[10^{-7}\right]=7\)
b)Độ pH của dung dịch đó là:
\(pH=-log\left[H^+\right]=-log\left[20.10^{-7}\right]\approx5,7\)
a) Ở độ cao 4km ta có: \(\ln \left( {\frac{p}{{100}}} \right) = - \frac{4}{7} \Leftrightarrow \frac{p}{{100}} = {e^{\frac{{ - 4}}{7}}} \Leftrightarrow p = 56,4718122\)
Vậy áp suất khí quyển ở độ cao 4 km là 56,4718122 kPa.
b) Ở độ cao trên 10km ta có:
\(h > 10 \Leftrightarrow \ln \left( {\frac{p}{{100}}} \right) < - \frac{{10}}{7} \Leftrightarrow \frac{p}{{100}} < {e^{\frac{{ - 10}}{7}}} \Leftrightarrow p < 23,96510364\)
Vậy ở độ cao trên 10 km thì áp suất khí quyển bé hơn 29,96510364 kPa.
a, Ta có:
\(L=50\Leftrightarrow10log\left(\dfrac{I}{I_0}\right)=50\\ \Leftrightarrow\dfrac{I}{I_0}=10^5\\ \Leftrightarrow I=I_0\cdot10^5=10^{-12}\cdot10^5=10^{-7}\left(W/m^2\right)\)
Vậy cường độ âm của giọng nói giáo viên là \(I=10^{-7}\left(W/m^2\right)\)
b, Ta có:
\(75\le L\le90\Leftrightarrow75\le10log\left(\dfrac{I}{I_0}\right)\le90\Leftrightarrow10^{7,5}\le\dfrac{I}{10^{-12}}\le10^9\\ \Leftrightarrow10^{-4,5}\le I\le10^{-3}\\ \Leftrightarrow3,16\cdot10^{-5}\le I\le10^{-3}\)
Vậy cường độ âm trong nhà xưởng này thay đổi trong khoảng \(3,16\cdot10^{-5}\left(W/m^2\right)\) đến \(10^{-3}\left(W/m^2\right)\)
\(pH=-log\left[H^+\right]=-log\left[10^{-4}\right]=4\)
\(pH=-log\left[H^+\right]=-log\left[10^{-5}\right]=5\)