Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{3}=\frac{y}{5}\)
\(\Rightarrow x=3k\) ; \(y=5k\)
Thay \(x=3k\) và \(y=5k\) vào biểu thức \(x+2y=10\) ta có :
\(3k+2\times5k=10\)
\(3k+10k=10\)
\(\left(3+10\right)k=10\)
\(13k=10\)
\(\Rightarrow k=\frac{10}{13}\)
Vậy :
\(\hept{\begin{cases}x=3k=3\times\frac{10}{13}=\frac{30}{13}\\y=5k=5\times\frac{10}{13}=\frac{50}{13}\end{cases}}\)
Mk ko biết đúng ko, đúng thì k cho mk nha
Đặt x/3=y/5=k
=> x=3k và y=5k
x+2y=10
3k+2.5k=10
3k+10k=10
13k=10
k=10/13
x=3k=3.10/13=30/13
y=5k=5.10/13=50/13
các bn giải thik giúp mk nha
phải trả lời đầy đủ nhé( ko chỉ trả lời đáp án thôi đâu)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(AB^2=BC^2-AC^2\)
\(\Leftrightarrow\)\(AB^2=10^2-\left(\sqrt{75}\right)^2\)
\(\Leftrightarrow\)\(AB^2=100-75\)
\(\Leftrightarrow\)\(AB^2=25\)
\(\Leftrightarrow\)\(AB=\sqrt{25}\)
\(\Leftrightarrow\)\(AB=5\) \(\left(cm\right)\)( vì khoảng cách là không có âm )
Vậy độ dài đoạn thẳng \(AB=5\)\(cm\)
Chúc bạn học tốt ~
Theo đ/l pi-ta-go ta có:
\(AB^2=BC^2-AC^2=10^2-\sqrt{75}^2=100-75=25\)
\(\Rightarrow AB=5\left(cm\right)\)
Lời giải:
$x^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow Q(x)=x^2+\sqrt{3}\geq \sqrt{3}>0$ với mọi $x\in\mathbb{R}$
Do đó đa thức $Q(x)$ vô nghiệm.
tớ mở mắt đầu tiên
bạn tíck mik đi