Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài đó có dạng
ax4+bx3+cx2+dx+e=0 (Với b=d hoặc b=-d)
Cách làm có nhìu cách tui chỉ rành một cách nên tui chỉ
Với b=d thì đặt t=x2+1
Với b=-d thì đặt t=x2-1
tự nguyên cứu tiếp đi
ta xét thấy đây là phương trình đối xứng vì hệ số của các số hạng cách đều số hạng đầu và số hạng cuối bằng nhau (ví dụ 3x4 và 3 có cùng hệ số là 3, -13x3 và -13x có cùng hệ số là -13....)
cụ thể đây là phương trình đối xứng bậc chẵn (số hạng đàu có bậc chẵn là 4)
giải như sau
ta nhẩm thấy 0 không phải là nghiệm của phương trình nên chia cả hai vế cho x2 ta có
3x2-13x+16-13/x + 3/x2 =0
<=>(3x^2 + 3/x^2) - (13x + 13/x) +16 =0
<=>3(x^2 + 1/x^2) - 13(x+1/x)=0
đặt x+1/x = a thì x^2+1/x^2=a^2 - 2 (cái này bạn dùng hằng đẳng thức (a+b)^2 để suy ra nhé)
thay vào ta được
3a - 13(a^2 - 2) +16 = 0
3a - 13a^2 + 26 =0
đến đây bạn giải a bằng cách đưa về phương trình tích rồi tìm x là xong
a) \(x^2-7x+20=0\)
\(\Delta=b^2-4ac=\left(-7\right)^2-4.1.20=-31\)
\(\Rightarrow\)Phương trình vô nghiệm
Cho mình sửa chút thì tính được
\(x^2-9x+20\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\x-4=0\Leftrightarrow x=4\end{matrix}\right.\)
3)
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)
\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy ................
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
Ta có : P(0) = 26
\(\Rightarrow a.0^2+b.0+c=26\)
\(\Leftrightarrow0+0+c=26\)
\(\Leftrightarrow c=26\)
Ta có : P ( 1 ) = 3
\(\Rightarrow a.1^2+b.1+c=3\)
\(\Leftrightarrow a+b+c=3\)
\(\Leftrightarrow a+b+26=3\)
\(\Leftrightarrow a+b=-23\) ( 1 )
Ta có : P ( 2 ) = 2000
\(\Rightarrow a.2^2+b.2+c=2000\)
\(\Leftrightarrow4a+2b+26=2000\)
\(\Leftrightarrow4a+2b=1974\) ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình :
\(\hept{\begin{cases}a+b=-23\\4a+2b=1974\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-23-b\\4.\left(-23-b\right)+2b=1974\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-23-b\\-92-4b+2b=1974\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-23-b\\-2b=1974+92\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-1033\\a=-23-\left(-1033\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-1033\\a=1010\end{cases}}\)
Vậy : a = 1010 ; b = - 1033 ; c = 26 ( phương trình cần tìm là : 1010x2 - 1033x + 26 = 0 )
Học tốt !
Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0
=x(x+3)+2(x+3)=(x+2)(x+3)=0
Dễ rồi
2)\(x^2-x-6=0=x^2-3x+2x-6=0\)
=x(x-3)+2(x-3)=0
=(x+2)(x-3)=0
Dễ rồi
3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)
Vì \(x^2+1>0\)
=>\(\left(x+2\right)^2=0\)
Dễ rồi
4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0
=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)
=>x+1=0
=>..................
5)\(x^2-7x+6=x^2-6x-x+6\) =0
=x(x-6)-(x-6)=0
=(x-1)(x-6)=0
=>.....
6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0
=2x(x+1)-5(x+1)=0
=(2x-5)(x+1)=0
7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0
Dễ rồi
Nghỉ đã hôm sau làm mệt
1) để pt trên là pt bậc nhất 1 ẩn thì:
\(\left\{{}\begin{matrix}m^2-4=0\\m-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\left(loai\right)\\m=-2\left(nhan\right)\end{matrix}\right.\\m\ne2\end{matrix}\right.\Rightarrow m=-2\)
Máy tính =))
Kính gửi bn sinh vật thượng đẳng :))
Đừng lm bà nội bọn mình ;lol;