K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2020

1.

\(4\left(1-cos^23x\right)+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}-4=0\)

\(\Leftrightarrow-4cos^23x+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=-\frac{1}{2}\\cos3x=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{9}+\frac{k2\pi}{3}\\x=\pm\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

2.

\(\Leftrightarrow\frac{\sqrt{3}-1}{2\sqrt{2}}sinx-\frac{\sqrt{3}+1}{2\sqrt{2}}cosx=-\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=-cos\left(\frac{5\pi}{12}\right)\)

\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=sin\left(-\frac{\pi}{12}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5\pi}{12}=-\frac{\pi}{12}+k2\pi\\x-\frac{5\pi}{12}=\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
19 tháng 10 2020

3.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+8tanx+8\sqrt{3}-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k2\pi\end{matrix}\right.\)

4.

\(\Leftrightarrow sin\left(x-120^0\right)=-cos\left(2x\right)=sin\left(2x-90^0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-90^0=x-120^0+k360^0\\2x-90^0=300^0-x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow...\)

5.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x=\frac{1}{2}-\frac{1}{2}cos6x\)

\(\Leftrightarrow cos6x=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=2x+k2\pi\\6x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

28 tháng 6 2018

giúp mk với

1 tháng 5 2020

cam on bn

NV
1 tháng 5 2020

\(\lim\limits_{x\rightarrow3^+}\frac{7x-1}{x-3}=\frac{20}{0}=+\infty\)

\(\lim\limits_{x\rightarrow5^+}\frac{11-2x}{x-5}=\frac{1}{0}=+\infty\)

\(\lim\limits_{x\rightarrow3^-}\frac{-x-3}{3-x}=\frac{-6}{0}=-\infty\)

22 tháng 1 2020

Bài 1. Ta có:

\(\begin{array}{l} S = \sum\limits_{k = 1}^n {{x^{2k}}} + \sum\limits_{k = 1}^n {\dfrac{1}{{{x^{2k}}}} + 2n} \\ = {x^2}\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}} + \dfrac{1}{{{x^2}}}.\dfrac{{1 - \dfrac{1}{{{x^{2n}}}}}}{{1 - \dfrac{1}{{{x^2}}}}} + 2n\\ = \dfrac{{\left( {1 - {x^{2n}}} \right)\left( {{x^{2n + 2}} - 1} \right)}}{{\left( {1 - {x^2}} \right){x^{2n}}}} + 2n \end{array}\)

Bài 2.

Ta có:

\(\begin{array}{l} T = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + ... + \dfrac{{2n - 1}}{{{2^n}}}\left( 1 \right)\\ \dfrac{1}{2}T = \dfrac{1}{{{2^2}}} + \dfrac{3}{{{2^3}}} + \dfrac{5}{{{2^4}}} + ... + \dfrac{{2n - 3}}{{{2^n}}} + \dfrac{{2n - 1}}{{{2^{n + 1}}}}\left( 2 \right) \end{array}\)

\((1)-(2)\)\(\Rightarrow \dfrac{1}{2}T = \dfrac{1}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + ... + \dfrac{2}{{{2^n}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}\)

\(\begin{array}{l} \Rightarrow T = 2\left[ {\dfrac{1}{2} + \dfrac{1}{2}\dfrac{{1 - {{\left( {\dfrac{1}{2}} \right)}^{n - 1}}}}{{1 - \dfrac{1}{2}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}} \right]\\ = 1 + \dfrac{{{2^{n - 1}} - 1}}{{{2^{n - 2}}}} - \dfrac{{2n - 1}}{{{2^n}}} \end{array}\)

NV
20 tháng 11 2019

\(S=x^2+\frac{1}{x^2}+2+x^4+\frac{1}{x^4}+2+...+x^{2n}+\frac{1}{x^{2n}}+2\)

\(=\left(x^2+x^4+...+x^{2n}\right)+\left(\frac{1}{x^2}+\frac{1}{x^4}+...+\frac{1}{x^{2n}}\right)+2n\)

\(=x^2.\frac{\left(x^2\right)^{n-1}-1}{x^2-1}+\frac{1}{x^2}.\frac{\left(\frac{1}{x^2}\right)^{n-1}-1}{\frac{1}{x^2}-1}+2n\)

\(=\frac{x^{2n}-x^2}{x^2-1}+\frac{x^{2-2n}-1}{1-x^2}+2n\)

\(T=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+...+\frac{2n-3}{2^{n-1}}+\frac{2n-1}{2^n}\)

\(\Rightarrow2T=1+\frac{3}{2}+\frac{5}{2^2}+...+\frac{2n-1}{2^{n-1}}\)

\(\Rightarrow T=1+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{n-1}}-\frac{2n-1}{2^n}\)

\(T=1+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-2}}-\frac{2n-1}{2^n}\)

\(T=1+1.\frac{\left(\frac{1}{2}\right)^{n-2}-1}{\frac{1}{2}-1}-\frac{2n-1}{2^n}=3-\frac{1}{2^{n-1}}-\frac{2n-1}{2^n}=3-\frac{1}{2^n}-\frac{n}{2^{n-1}}\)

1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)

\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)

\(\Leftrightarrow5\sin2x+5\cos2x=5\)

\(\Leftrightarrow\cos2x+\sin2x=1\)

\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)

\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)

\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

1 tháng 8 2018

1/ \(pt\Leftrightarrow\left(3cos^2x-sin^2x\right)\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow\left(\dfrac{3}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)\left(\dfrac{1}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)=0\)

\(\Leftrightarrow\left(2cos2x+1\right)cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

2/ \(pt\Leftrightarrow\left(sinx-1\right)\left(sin^2x+sinx+6\right)=0\)

\(\Leftrightarrow sinx=1\)

3/ \(pt\Leftrightarrow\dfrac{1-cos2x}{2}-4sin2x+\dfrac{7}{2}\left(1+cos2x\right)=0\)

\(\Leftrightarrow3cos2x-4sin2x=-4\)

\(\Leftrightarrow5\left(\dfrac{3}{5}cos2x-\dfrac{4}{5}sin2x\right)=-4\)

\(\Leftrightarrow cos\left(2x+arccos\dfrac{3}{5}\right)=-\dfrac{4}{5}\)

4,5 giải tương tự câu 3

11 tháng 7 2018

1. \(4\cos^2x-6\sin^2x+5\sin2x-4=0\)

\(\Leftrightarrow4\cos^2x-6\sin^2x+10\sin x\cos x-4\left(\cos^2x+\sin^2x\right)=0\)

\(\Leftrightarrow10\sin x\cos x-10\sin^2x=0\)

\(\Leftrightarrow10\sin x\left(\cos x-\sin x\right)=0\)

2. \(\sqrt{3}\cos^2x+2\sin x\cos x-\sqrt{3}\sin^2x-1=0\)

\(\Leftrightarrow\left(\sqrt{3}\cos^2x+\sin x\cos x\right)+\left(\sin x\cos x-\sqrt{3}\sin^2x\right)-1=0\)

\(\Leftrightarrow2\cos x\left(\dfrac{\sqrt{3}}{2}\cos x+\dfrac{1}{2}\sin x\right)+2\sin x\left(\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x\right)-1=0\)

\(\Leftrightarrow2\cos x.\cos\left(\dfrac{\Pi}{6}-x\right)+2\sin x.\sin\left(\dfrac{\Pi}{6}-x\right)-1=0\)

\(\Leftrightarrow\cos\dfrac{\Pi}{6}+\cos\left(2x-\dfrac{\Pi}{6}\right)+\cos\left(2x-\dfrac{\Pi}{6}\right)-\cos\dfrac{\Pi}{6}-1=0\)

\(\Leftrightarrow\cos\left(2x-\dfrac{\Pi}{6}\right)=\dfrac{1}{2}\)

3. \(2\sin^22x-3\sin2x\cos2x+\cos^22x=2\)

\(\Leftrightarrow2\sin^22x-3\sin2x\cos2x+\cos^22x-2\left(\sin^22x+\cos^22x\right)=0\)

\(\Leftrightarrow3\sin2x\cos2x+\cos^22x=0\)

\(\Leftrightarrow\cos2x\left(3\sin2x+\cos2x\right)=0\)

-TH1: ...

- TH2: \(\cos2x=-3\sin2x\)\(\cos^22x+\sin^22x=1\) suy ra ...

4. \(4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}=3\)

\(\Leftrightarrow4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}-3\left(\cos^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x=0\)

\(\Leftrightarrow\dfrac{1+\cos x}{2}+\dfrac{1}{2}\sin x=0\)

\(\Leftrightarrow\cos x+\sin x=-1\)

NV
18 tháng 10 2020

e.

\(3\left(1-sin^2x\right)-5sinx-1=0\)

\(\Leftrightarrow-3sin^2x-5sinx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

f.

\(2\left(2cos^2x-1\right)-cosx+7=0\)

\(\Leftrightarrow4cos^2x-cosx+5=0\)

Phương trình vô nghiệm

NV
18 tháng 10 2020

g.

\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)

Phương trình vô nghiệm

h.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

NV
13 tháng 4 2020

1/ \(y=x^{-1}+\frac{2}{3}x^{-2}-\frac{2}{3}\Rightarrow y'=-\frac{1}{x^2}-\frac{4}{3x^3}\)

\(3x^3y'+3x+4=3x^3\left(-\frac{1}{x^2}-\frac{4}{3x^3}\right)+3x+4\)

\(=-3x-4+3x+4=0\) (đpcm)

2/ \(y'\le0\)

\(\Leftrightarrow3x^2-10x+7\le0\)

\(\Leftrightarrow1\le x\le\frac{7}{3}\)