Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.
Tìm Min.
\(M=\sum\sqrt{\left(x-3\right)^2+4^2}\ge\sqrt{\left(x+y+z-9\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
Đẳng thức xảy ra khi $x=y=z=1.$
Tìm Max.
Ta đi chứng minh \(5-\dfrac{1}{3}x\ge\sqrt{x^2-16x+25}\)
Do $x+y+z=3;x,y,z\ge 0$ nên $x\le 3.$ Do đó \(VT\ge5-1=4>0.\) (1)
Bình phương hai vế, rút gọn, bất đẳng thức tương đương với \(\dfrac{8}{9}x\left(3-x\right)\ge0\) (hiển nhiên)
Thiết lập hai bất đẳng thức còn lại tương tự và cộng theo vế thu được Max = 14 kết hợp với số 4 ở (1) là được ngày sinh của em=))
Đề bất đẳng thức đơn giản v:vv
3c) Ta sẽ chứng minh
\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}\ge\dfrac{a^2}{b^2+c^2}\Leftrightarrow\dfrac{a^3\left[2\left(b^2+c^2\right)a^2-\left(b+c\right)^3a+\left(b^2+c^2\right)^2\right]}{\left[a^3+\left(b+c\right)^3\right]\left(b^2+c^2\right)}\ge0\)
Hay là \(2\left[2\left(b^2+c^2\right)a^2+\left(b^2+c^2\right)^2\right]\ge (b+c)^3 a\)
Đúng vì theo AM-GM ta có:
\(VT\ge2\sqrt{2a^2\left(b^2+c^2\right)^3}\ge2\sqrt{2\left[\dfrac{\left(b+c\right)^2}{2}\right]^3}a=\left(b+c\right)^3a=VP.\)
Xong.
Toán C89 :
Ta có : \(x^3+y^3+6xy\le8\)
\(\Leftrightarrow\left(x+y\right)^3-3xy.\left(x+y\right)-8+6xy\le0\)
\(\Leftrightarrow\left[\left(x+y\right)^3-8\right]-3xy.\left(x+y-2\right)\le0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4\right]-3.xy.\left(x+y-2\right)\le0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\right]\le0\) (*)
Ta thấy : \(\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\)
\(=x^2+y^2-xy+2.\left(x+y\right)+4\)
\(=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+2.\left(x+y\right)+4>0\forall x,y>0\)
Do đó từ (*) suy ra : \(x+y-2\le0\Leftrightarrow x+y\le2\)
Ta có : \(Q=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\ge\dfrac{4}{2}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
Vậy Min \(Q=2\) khi \(x=y=1\)
Toán C88 :
Áp dụng BĐT Cô - si cho 2 số dương lần lượt ta có được :
\(\left(a+1\right)+4\ge4\sqrt{a+1}\)
\(\left(b+1\right)+4\ge4\sqrt{b+1}\)
\(\left(c+1\right)+4\ge4\sqrt{c+1}\)
Do đó : \(a+b+c+15\ge4.\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)=4.6=24\)
\(\Leftrightarrow a+b+c\ge9\)
Ta có : \(a^2+ab+b^2=\dfrac{4.\left(a^2+ab+b^2\right)}{4}=\dfrac{\left(a-b\right)^2+3.\left(a+b\right)^2}{4}\ge\dfrac{3.\left(a+b\right)^2}{4}>0\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\dfrac{\sqrt{3}}{2}.\left(a+b\right)\)
Chứng minh tương tự ta có :
\(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}}{2}\left(b+c\right)\)
\(\sqrt{c^2+ca+a^2}\ge\dfrac{\sqrt{3}}{2}.\left(c+a\right)\)
Do đó : \(P\ge\dfrac{\sqrt{3}}{2}\cdot2\cdot\left(a+b+c\right)=\sqrt{3}.\left(a+b+c\right)\ge9\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Vậy Min \(P=9\sqrt{3}\) khi \(a=b=c=3\)
Câu III ý 2)
Ta có:
\(P^2\le\left(a^2+b^2\right)\left[3b\left(a+2b\right)+3a\left(b+2a\right)\right]=2\left[6\left(a^2+b^2\right)+3\cdot2ab\right]\)
\(\le2\left[6\cdot2+3\left(a^2+b^2\right)\right]\le36\Rightarrow P\le6.\)
Đẳng thức xảy ra khi $a=b=1.$
Vậy...
Bài V có phải là 3; 3; 4 không anh Quoc Tran Anh Le CTV?
I.1.
ĐK: \(x\in R\)
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow2x^2+6x+2=2\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow x^2+1+x^2+6x+9-2\left(x+3\right)\sqrt{x^2+1}=8\)
\(\Leftrightarrow\left(x+3-\sqrt{x^2+1}\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3-\sqrt{x^2+1}=2\sqrt{2}\\x+3-\sqrt{x^2+1}=-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+3-2\sqrt{2}\left(1\right)\\\sqrt{x^2+1}=x+3+2\sqrt{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+1}=x+3-2\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3-2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3-2\sqrt{2}\right)x+17-12\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\sqrt{2}-3\\2\left(3-2\sqrt{2}\right)x=12\sqrt{2}-16\end{matrix}\right.\)
\(\Leftrightarrow x=2\sqrt{2}\)
\(\left(2\right)\Leftrightarrow\sqrt{x^2+1}=x+3+2\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3+2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3+2\sqrt{2}\right)x+17+12\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3-2\sqrt{2}\\2\left(3+2\sqrt{2}\right)x=-16-12\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow x=-2\sqrt{2}\)
Vậy phương trình có nghiệm \(x=\pm2\sqrt{2}\)
Câu 1 :
Ta có : \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
- Đặt \(\sqrt{x^2+1}=a\left(a\ge0\right)\)
PT TT : \(a^2+3x=a\left(x+3\right)\)
\(\Leftrightarrow a^2-ax-3a+3x=0\)
\(\Leftrightarrow a^2-a\left(x+3\right)+3x=0\)
Có : \(\Delta=b^2-4ac=\left(a+3\right)^2-4.3a=a^2+6a+9-12a\)
\(=a^2-6a+9=\left(a-3\right)^2\ge0\forall a\)
TH1 : \(\Delta=0\Rightarrow a=3\left(TM\right)\)
\(\Rightarrow\sqrt{x^2+1}=3\)
\(\Rightarrow x=\pm2\sqrt{2}\)
TH2 : \(\Delta>0\)
=> Pt có 2 nghiệm phân biệt :\(\left\{{}\begin{matrix}a=\dfrac{x+3+\sqrt{\left(x-3\right)^2}}{2}\\a=\dfrac{x+3-\sqrt{\left(x-3\right)^2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+\left|x-3\right|}{2}\\\sqrt{x^2+1}=\dfrac{x+3-\left|x-3\right|}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=\dfrac{2x}{2}=x\\\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\\\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+1=9\\x^2+1=x^2\end{matrix}\right.\)
\(\Rightarrow x=\pm2\sqrt{2}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\pm2\sqrt{2}\right\}\)
Bài I
a ĐKXĐ : \(\left\{{}\begin{matrix}2-x\ge0\\2-x^2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\-\sqrt{2}\le x\le\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)
\(\Rightarrow\left(2-x^2\right)=\left(\sqrt{2-x}\right)^2\Leftrightarrow x^4-4x^2+4=2-x\Leftrightarrow x^4-4x^2+x+2=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2-3x^2+3x-2x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\left(1\right)\\x^3+x^2-3x-2=0\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow x=1\left(TM\right)\)
Từ (2) \(\Rightarrow x^3+2x^2-x^2-2x-x-2=0\Leftrightarrow\left(x+2\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x-1=0\end{matrix}\right.\)
*Nếu x+2=0 \(\Leftrightarrow x=-2\left(L\right)\)
*Nếu \(x^2-x-1=0\Leftrightarrow x^2-x+\dfrac{1}{4}=\dfrac{5}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{1}{2}=\dfrac{-\sqrt{5}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+1}{2}\left(L\right)\\x=\dfrac{-\sqrt{5}+1}{2}\left(TM\right)\end{matrix}\right.\)
Vậy...
hình 1 : cho tam giác ABC vuông tại A, hạ đường cao AH, H thuộc BC
Xét tam giác ABC vuông tại A, đường AH
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=y=\frac{AB^2}{BC}=\frac{225}{17}\)cm
=> \(CH=x=BC-y=17-\frac{225}{17}=\frac{64}{17}\)cm
* Áp dụng hệ thức : \(AC^2=c=CH.BC=\frac{64}{17}.17=64\Rightarrow AC=8\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=h=\frac{AB.AC}{BC}=\frac{15.8}{17}=\frac{120}{17}\)cm
tương tự hình 2 ; 3
làm ko làm nốt luôn đi
dùng đã bt rồi nhưng cần kết quả để so sánh sai ở đâu
Bài 2a
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{25}\)cm
-> BC = HB + CH = \(25+\frac{256}{25}=\frac{881}{25}\)cm
Áp dụng định lí Pytago của tam giác ABH vuông tại H
\(AB=\sqrt{AH^2+HB^2}=\sqrt{881}\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=18,9...\)cm
Bài 2c
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức :
\(AH^2=HB.HC=3.4=12\Rightarrow AH=2\sqrt{3}\)cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+HB^2}=\sqrt{21}\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{21}+\frac{1}{AC^2}\Rightarrow AC=2\sqrt{7}\)cm
[Toán.C93_17.2.2021] rất hay và khó! Đó là câu em gửi anh trên Facebook hồi sáng. Và em cũng là người đầu công khai đưa ra lời giải bài này.
Xem chi tiết tại tthnew's blog: 1721
Cho mình hỏi bạn tên gì vậy, thấy bạn ở đâu cũng có, hình như hồi xưa cũng ở bên olm.