Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\ne\pm3\)
\(P=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+x-6}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{x-2}{x-3}=1+\frac{1}{x-3}\)
P is an integer if and only if 1 is divisible by \(x-3\)
Therefore \(x-3=\left\{-1;1\right\}\Rightarrow x=\left\{2;4\right\}\)
\(\Rightarrow x_{min}=2\)
Ta có:
\(\hept{\begin{cases}ab=q\\a+b=p\end{cases}}\)và \(\hept{\begin{cases}cd=s\\c+d=r\end{cases}}\)
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}=\frac{2\left(qc+sb+sa+qd\right)}{p^2+q^2+r^2+s^2}\)
\(=\frac{2\left(qr+sp\right)}{p^2+q^2+r^2+s^2}\le\frac{2\left(qr+sp\right)}{2\left(qr+sp\right)}=1\)
Với M = 1 thì \(\hept{\begin{cases}q=r\\p=s\end{cases}}\)
Tới đây thì không biết đi sao nữa :D
thôi bỏ bài này đi cũng được vì chưa tới lúc cần dung phương trình