K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

On the supposition that AB<AC

AK be the angle bisector of the triangle

\(\Rightarrow\)  \(\frac{KB}{KC}=\frac{AB}{AC}=\frac{2}{3}\)

\(\Rightarrow\frac{MB-MK}{MC+MK}=\frac{MC-MK}{MC+MK}=\frac{2}{3}\)

\(\Rightarrow3MC-3MK=2MC+2MK\)

\(\Rightarrow MC=5MK\)

\(\Rightarrow BK=MC-MK=5MK-MK=4MK\)

Let AH be the height of the triangle

\(\Rightarrow\frac{S_{AKM}}{S_{ABK}}=\frac{\frac{AH.KM}{2}}{\frac{BK.AH}{2}}=\frac{KM}{4KM}=\frac{1}{4}\)

If AB > AC then

\(\Rightarrow CM=5MK\)

\(\Rightarrow Bk=CM+MK=5MK+MK=6MK\)

\(\Rightarrow\frac{S_{AKM}}{S_{AKB}}=\frac{\frac{AH.MK}{2}}{\frac{AH.BK}{2}}=\frac{MK}{6MK}=\frac{1}{6}\)

21 tháng 3 2017

bái phục giờ vẫn còn thi toán tiếng anh á ghê á nha

thi xog cấp tỉnh là vứt luôn nhác thi lắm luôn

22 tháng 3 2017

vẫn còn qg mà mà bạn

7 tháng 4 2019

22 cm2 nhá bạn

27 tháng 6 2020

đựng đường cao 2 bên áp dụng 2 tam giác đồng dạng suy ra tỉ số diện tích

đáp án 22 cm2

5 tháng 4 2017

I don't know!

1.  Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC 2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ? 3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw...
Đọc tiếp

1.  Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC

 

2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ?

 

3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw an equilateral triangle ACD where \(D\ne B\) . Let the point N inside \(\Delta ACD\) such that AMN is an equilateral triangle. Determine \(\widehat{BMC}\) ?

 

4. Given an isosceles triangle ABC at A. Draw ray Cx being perpendicular to CA, BE perpendicular to Cx \(\left(E\in Cx\right)\) . Let M be the midpoint of BE, and D be the intersection point of AM and Cx. Prove that \(BD⊥BC\)

 

0