Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk : \(x\ge0\) ; \(x\ne1\)
A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)
b) đk : \(x\ne0;x\ne1\)
B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)
\(P=1-\left(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2}{\sqrt{x}}-\frac{2-x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=1-\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{2-x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=1-\left(\frac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=1-\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}\)
\(=1-\frac{\sqrt{x}}{\sqrt{x}-1}=-\frac{1}{\sqrt{x}-1}\)
\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)
\(C=-x\sqrt{x}+x+\sqrt{x}-1\)
\(D=x-\sqrt{x}+1\)
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)
_Minh ngụy_
\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )
\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)
_Minh ngụy_
B=\(\frac{x\sqrt{x}-1}{x-1}\)(x>0,x≠1)
=\(\frac{\sqrt{x^3}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\((\frac{\sqrt{x}+1}{2\sqrt{x}-2}-\frac{\sqrt{x}-1}{2\sqrt{x}+2}-\frac{\sqrt{x}+1}{1-x})\div\frac{x+2\sqrt{x}}{x+\sqrt{x}}\)
\(=(\frac{\sqrt{x}+1}{2(\sqrt{x}-1)}-\frac{\sqrt{x}-1}{2(\sqrt{x}+1)}+\frac{\sqrt{x}+1}{x-1})\div\frac{\sqrt{x}(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+1)}\)
\(=(\frac{(\sqrt{x}+1)^2+\left(\sqrt{x}-1\right)^2+2\left(x-1\right)}{2(x-1)}\div\frac{(\sqrt{x}+2)}{(\sqrt{x}+1)}\)
Khai triển ra nhé, mk làm như trên thì lâu lắm nên bn tự lm nhé
\(=\frac{2\left(3\sqrt{x}+1\right)}{2(x-1)}\times\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{(3\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+2)}\)
come mon