Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk : \(x\ge0\) ; \(x\ne1\)
A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)
b) đk : \(x\ne0;x\ne1\)
B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)
\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)
\(C=-x\sqrt{x}+x+\sqrt{x}-1\)
\(D=x-\sqrt{x}+1\)
a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)
\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)
\(P=1-\left(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2}{\sqrt{x}}-\frac{2-x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=1-\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{2-x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=1-\left(\frac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=1-\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}\)
\(=1-\frac{\sqrt{x}}{\sqrt{x}-1}=-\frac{1}{\sqrt{x}-1}\)
\((\frac{\sqrt{x}+1}{2\sqrt{x}-2}-\frac{\sqrt{x}-1}{2\sqrt{x}+2}-\frac{\sqrt{x}+1}{1-x})\div\frac{x+2\sqrt{x}}{x+\sqrt{x}}\)
\(=(\frac{\sqrt{x}+1}{2(\sqrt{x}-1)}-\frac{\sqrt{x}-1}{2(\sqrt{x}+1)}+\frac{\sqrt{x}+1}{x-1})\div\frac{\sqrt{x}(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+1)}\)
\(=(\frac{(\sqrt{x}+1)^2+\left(\sqrt{x}-1\right)^2+2\left(x-1\right)}{2(x-1)}\div\frac{(\sqrt{x}+2)}{(\sqrt{x}+1)}\)
Khai triển ra nhé, mk làm như trên thì lâu lắm nên bn tự lm nhé
\(=\frac{2\left(3\sqrt{x}+1\right)}{2(x-1)}\times\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{(3\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+2)}\)
= \(\frac{\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\sqrt{x}}:\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right]\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
mình thêm 1 vài bước nữa , thiếu rồi xin lỗi bạn nhé !
\(\frac{2\left(x+\sqrt{x}\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}=\frac{2\left[\sqrt{x}\left(\sqrt{x}+1\right)\right]^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}=\frac{2x.\left(\sqrt{x}+1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\)
\(=\frac{2x}{x-1}\)(gọn rồi đấy)
không biết làm gì ngoài nhân chéo :((
\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\left(ĐKXĐ:x\ge0;x\ne1\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\left(x+\sqrt{x}\right)\)
\(=\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}.\left(x+\sqrt{x}\right)\)
\(=\frac{x\sqrt{x}-x\sqrt{x}-\sqrt{x}-\sqrt{x}+4\sqrt{x}+2x-2x+2x-2+2}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}.\left(x+\sqrt{x}\right)\)
\(=\frac{2\left(x+\sqrt{x}\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\)
xong nhé :v bạn làm được tiếp thì làm
Với \(x>0;x\ne1\)
\(P=\left(\frac{1}{\sqrt{x}}-\frac{2}{1+\sqrt{x}}\right)\left(\frac{x+\sqrt{x}}{1-\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\frac{x+\sqrt{x}}{1-\sqrt{x}}\right)=\frac{1-\sqrt{x}}{1-\sqrt{x}}=1\)
\(P=\left(\frac{1}{\sqrt{x}}-\frac{2}{1+\sqrt{x}}\right)\frac{x+\sqrt{x}}{1-\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}-2\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}\frac{x+\sqrt{x}}{1-\sqrt{x}}\)
\(P=\frac{1-\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-\sqrt{x}}\)
\(P=1\)