\(P=\left(\dfrac{4}{x+1}-1\right):\dfrac{9-x^2}{x^2+2x+1}\)
a) Tìm ĐKXĐ và rút gọn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

a/ ĐKXĐ: x khác -1

\(P=\left(\dfrac{4}{x+1}-1\right):\dfrac{9-x^2}{x^2+2x+1}=\left(\dfrac{4}{x+1}-\dfrac{x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(3-x\right)\left(3+x\right)}\)

\(=\dfrac{3-x}{x+1}\cdot\dfrac{\left(x+1\right)^2}{\left(3-x\right)\left(3+x\right)}=\dfrac{x+1}{x+3}\)

b/ |x + 1| = 2

\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)

Với x = 1 P = \(\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)

c/ \(\dfrac{x+1}{x+3}=\dfrac{x+3-2}{x+3}=\dfrac{x+3}{x+3}-\dfrac{2}{x+3}=1-\dfrac{2}{x+3}\)

ĐỂ P nguyên thì \(\dfrac{2}{x+3}\in Z\Leftrightarrow x+3\inƯ\left(2\right)\)

\(x+3=\left\{-2;-1;1;2\right\}\)

=> \(x=\left\{-5;-4;-2;-1\right\}\) (tm)

Vậy............

12 tháng 12 2017

ĐKXĐ : \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\9-x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

a, \(A=\dfrac{x-5}{x-3}-\dfrac{2x}{x+3}-\dfrac{2x^2-x+15}{9-x^2}\)

\(=\dfrac{\left(x-5\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x^2-x+15}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2-2x-15-2x^2+6x+2x^2-x+15}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x}{x+3}\)

b, \(\left|x-1\right|=2\)

\(\Rightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(kot/m\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)

Thay x =- 1 vào biểu thức A ,có :

\(\dfrac{-1}{-1+3}=\dfrac{-1}{2}\)

Vậy tại x = -1 gtri của bt A là -1/2

Vậy tại x = 3 biểu thức A ko có giá trị

c,\(\dfrac{x}{x+3}=\dfrac{x+3-3}{x+3}=1-\dfrac{3}{x+3}\)

Để A có giá trị nguyên

\(\Leftrightarrow\dfrac{3}{x+3}\) là số nguyên

\(\Leftrightarrow3⋮x+3\)

\(\Leftrightarrow x+3\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(x+3\) 1 -1 3 -3
x -2 (t/m) -4(t/m) 0 (t/m) -6(t/m)

Vậy \(x\in\left\{0;-2;-4;-6\right\}\) thì A có giá trị nguyên

12 tháng 12 2017

Chócứsủa Đoànngườicứđi Sốngchođángđichúcmàymaymắn

4 tháng 12 2017

a, Để C có nghĩa <=> \(\left\{{}\begin{matrix}2x-2\ne0\\2-2x^2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne2\\2x^2\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)\(\Leftrightarrow x\ne\pm1\) thì C có nghĩa.

b, \(\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}=\dfrac{x}{2\left(x-1\right)}+\dfrac{-\left(x^2+1\right)}{2\left(x^2-1\right)}\)

\(=\dfrac{x}{2\left(x-1\right)}+\dfrac{-\left(x^2+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{-\left(x^2+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)

c, \(C=-0,5\Leftrightarrow\dfrac{1}{2\left(x+1\right)}=-0,5\)

\(\Leftrightarrow2\left(x+1\right)=\dfrac{1}{-0,5}=-2\Leftrightarrow x+1=-1\Leftrightarrow x=-2\)

Vậy....

4 tháng 12 2017

a) để A xát định thì

\(\left[{}\begin{matrix}2x+10\ne0\\x\ne0\\2x\left(x-5\right)\ne0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}2x\ne-10\\x\ne0\\\left[{}\begin{matrix}2x\ne0\\x-5\ne0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x\ne-5\\x\ne0\\\left[{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x\ne0\\x\ne-5\\x\ne5\end{matrix}\right.\) thì A được xác định

5 tháng 12 2017

Em cần thay dấu [ thành dấu {.

4 tháng 12 2017

Tên đẹp :))

1.

a) \(x^2-x=x\left(x-1\right)\)

Để phân thức được xác định thì mẫu thức phải \(\ne\) \(0.\)

\(\Rightarrow x\ne0\)\(x\ne1\)

Vậy \(x\ne0\)\(x\ne1\) thì phân thức \(\dfrac{2x-1}{x^2-x}\) được xác định.

b)

- Khi \(x=0:\) Không thỏa mãn điều kiện của biến nên không tồn tại giá trị của phân thức.

- Khi \(x=3:\) \(\dfrac{2x-1}{x^2-x}=\dfrac{2.3-1}{3^2-3}=\dfrac{5}{6}\)

2.

\(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x}{2x-6}\)

a)

Để phân thức được xác định thì mẫu thức phải \(\ne\) \(0.\)

\(\Rightarrow2x-6\ne0\)

\(\Rightarrow x\ne3\)

Vậy \(x\ne3\) thì phân thức \(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) được xác định.

b)

\(\dfrac{3x}{2x-6}=1\)

\(\Rightarrow x=-6\)

3 tháng 1 2020

tên truất nhất làng hoc24 là đây chứ đâu

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)a)rút gọn A và tính A khi x=2b)Rút gọn B và tìm x để B=2/5c)tìm x thuộc Z  để (A,B)thuộc Z 2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2c)tìm x để A>03)B= x+2/x+3 - 5/x^2+x-6 - 1/2-xa)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị...
Đọc tiếp

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z  để (A,B)thuộc Z
 
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0

3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị nguyên

4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C    b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1         d) tìm giá trị nhỏ nhất của biểu thức C

5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D 
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
 

2
7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá