\(f\left(x\right)=\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

a,1,A=\(\sqrt{2x^2-8x+17}\)=\(\sqrt{2\left(x^2-4x+4\right)+9}\)=\(\sqrt{2\left(x-2\right)^2+9}\)

\(\left(x-2\right)^2\ge0\) vs mọi x

=> \(2\left(x-2\right)^2+9\ge9\) vs mọi x

<=> \(A=\sqrt{2\left(x-2\right)^2+9}\ge\sqrt{9}=3\)

Dấu "=" xảy ra <=> x=2

Vậy min A=3 <=> x=2

2,C=\(x-2\sqrt{x-4}+3\)( x\(\ge4\))

= \(\left(x-4\right)-2\sqrt{x-4}+1+6\)

=\(\left(\sqrt{x-4}-1\right)^2+6\)

\(\left(\sqrt{x-4}-1\right)^2\ge0\) với mọi \(x\ge4\)

=> C= \(\left(\sqrt{x-4}-1\right)^2+6\ge6\) với mọi x\(\ge4\)

Dấu "=" xảy ra <=> \(\sqrt{x-4}=1\) <=> \(x=5\) (t/m)

Vậy minC=6 <=>x=5

3,D=\(\sqrt{3x^2-12x+16}+\sqrt{x^4-8x^2+17}\)

=\(\sqrt{3\left(x^2-4x+4\right)+4}+\sqrt{x^4-8x^2+16+1}\)

=\(\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\)

\(\sqrt{3\left(x-2\right)^2+4}\ge\sqrt{0+4}=2\)

\(\sqrt{\left(x^2-4\right)^2+1}\ge\sqrt{0+1}=1\)

=> \(D=\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\ge2+1\)

<=> D \(\ge3\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-2=0\\x^2-4=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\x^2=4\end{matrix}\right.\) (t/m)

=> x=2

Vậy minD=3 <=>x=2

b, B=\(\sqrt{-3x^2+18x+22}=\sqrt{49-3\left(x^2-6x+9\right)}=\sqrt{49-3\left(x-3\right)^2}\)

\(3\left(x-3\right)^2\ge0\) vs mọi x

<=> 49\(-3\left(x-3\right)^2\le49\) vs mọi x

<=> \(\sqrt{49-3\left(x-3\right)^2}\le\sqrt{49}=7\)

<=> B\(\le7\)

Dấu "=" xảy ra <=> x=3

Vậy max B=7 <=> x=3

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

26 tháng 12 2019

Tập xác định D của hàm số là \(\left[-2;5\right]\)

Ta có: \(f'\left(x\right)=\frac{-2x+4}{2\sqrt{-x^2+4x+21}}-\frac{-2x+3}{2\sqrt{-x^2+3x+10}}\)với \(x\in\left(-2;5\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left(-2x+4\right)\sqrt{-x^2+3x+10}=\)\(\left(-2x+3\right)\sqrt{-x^2+4x+21}\)

Suy ra \(\left(-2x+4\right)^2\left(-x^2+3x+10\right)=\)\(\left(-2x+3\right)^2\left(-x^2+4x+21\right)\)(1)

Khai triển ta được: \(51x^2-104x+29=0\)

\(\Delta=104^2-4.51.29=4900,\sqrt{\Delta}=70\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{104+70}{102}=\frac{29}{17}\\x=\frac{104-70}{102}=\frac{1}{3}\end{cases}}\)

Thử lại chỉ có \(\frac{1}{3}\)là nghiệm của (1)

Lập bảng biến thiên của hàm số f(x) suy ra \(f\left(x\right)_{min}=f\left(\frac{1}{3}\right)=\frac{\sqrt{200}-\sqrt{98}}{3}\)

27 tháng 12 2019

@ Cool@ Không sai. Làm thế cũng đc nhưng mà lớp 9 đã học đạo hàm đâu?

Phải cuối năm lớp 11 mới học  mà em,

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

25 tháng 8 2017

\(\left(\sqrt{2x+5}-\left(x+1\right)\right)^2+\left(\sqrt{3\left(x+1\right)}-\sqrt{x+7}\right)^2=0.\\ \)
Đến đây chắc biết phải làm gì =))
 

15 tháng 7 2019

\(A=3x+\sqrt{9x^2-24x+16}=3x+\sqrt{\left(3x\right)^2-2.3.4x+4^2}=3x+\sqrt{\left(3x-4\right)^2}=3x+\left|3x-4\right|=-9+13=4\)

\(B=5x-\sqrt{\left(2x\right)^2+2.2.3x+3^2}=5x-\sqrt{\left(2x+3\right)^2}=5x-\left|2x+3\right|=-5\sqrt{5}+2\sqrt{5}-3=-3\left(\sqrt{5}+1\right)\)

21 tháng 7 2018

Giúp e với ạ T.T