K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 4 2019

\(x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow16-2x_1x_2=10\Rightarrow x_1x_2=3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=3\end{matrix}\right.\) theo Viet đảo, chúng là nghiệm của pt:

\(x^2-4x+3=0\)

26 tháng 4 2021

\(x^2-2mx+2m-3=0\)

\(\Delta^,_x=m^2-2m+3\)

\(=\left(m-1\right)^2+2\ge2>0;\forall m\)

\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)

Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)

\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)

\(\Leftrightarrow-8m+4=-4\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức  \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

NV
27 tháng 3 2019

\(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow16-2x_1x_2=10\Rightarrow x_1x_2=3\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=3\end{matrix}\right.\)

Theo Viet đảo, \(x_1;x_2\) là nghiệm của:

\(x^2-4x+3=0\)

Cho tớ sửa đề làm cho nó dễ nhé == chứ x2^2 mà x1 thôi thì tớ ko có bt lm 

Ta có : \(x^2+\left(-m+2\right)x-6=0\left(a=1;b=-m+2;c=-6\right)\)

Cái chỗ này là mk đổi dấu cho thuận một tí ko ko xét b đc )): lại 1 bước đi vạn dặm đau thì toang =)) 

\(\Delta=\left(-m+2\right)^2-4\left(-6\right)=m^2+4+24=m^2+28\) Vậy : Pt luôn có 2 nghiệm \(\forall x\)

Áp dụng hệ thức Vi et ta có : \(x_1+x_2=m-2;x_1x_2=-6\)

Theo bài ra ta có : \(x_2^2-x_1x_2+\left(m-2\right)x_1^2=16\)

\(\Leftrightarrow\left(x_1^2x_2^2\right)-x_1x_2+\left(m-2\right)=16\)

\(\Leftrightarrow\left(x_1x_2\right)^2-x_1x_2+m-2=16\)

\(\Leftrightarrow\left(-6\right)^2+6+m-2=16\)

\(\Leftrightarrow36+6+m-2=16\Leftrightarrow40+m-16=0\Leftrightarrow m=-24\)

NV
13 tháng 4 2019

\(\Delta'=m^2-4m+4=\left(m-2\right)^2\ge0\)

Phương trình luôn có nghiệm, theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)

\(\left(x_1-2\right)\left(x_2-2\right)=x_1^2+x_2^2-8\)

\(\Leftrightarrow x_1x_2-2\left(x_1+x_2\right)+4=\left(x_1+x_2\right)^2-2x_1x_2-8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2+2\left(x_1+x_2\right)-12=0\)

\(\Leftrightarrow4m^2-3\left(4m-4\right)+4m-12=0\)

\(\Leftrightarrow4m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

4 tháng 4 2020
https://i.imgur.com/Gu2x8wy.jpg
13 tháng 4 2019

\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)

Vậy pt luôn có 2 nghiệm phân biệt.

Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)

\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)

21 tháng 5 2016

a) x1^2+x2^2=(x1+x2)^2-2x1x2

x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)

áp dụng viét thay vô

b) giải hệ pt

đenta>=0

x1+x2=-m

x1x2=m+3

và 2x1+3x2=5

c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại

d)áp dụng viét 

x1+x2=-m

x1x2=m+3

CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3

b: \(\text{Δ}=\left(-4\right)^2-4\cdot3\cdot\left(m+1\right)\)

\(=16-12m-12=-12m+4\)

Để pt có hai nghiệm thì -12m+4>=0

=>m<=1/3

Ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{10}{9}\)

=>\(\left(\dfrac{4}{3}\right)^2-2\cdot\left(m+1\right)=\dfrac{10}{9}\)

=>2(m+1)=16/9-10/9=6/9

=>m+1=3/9

=>m=-2/3

a: Để phương trình có hai nghiệm trái dấu thì m+1<0

hay m<-1