K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)

\(\exists x\in R,x\le2\Rightarrow x^2\le4\)

\(\exists x\in R,x^2\le4\Rightarrow x\le2\)

5 tháng 7 2019

Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha

Lập mệnh đề phủ định của các mệnh đề sau:

a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)

b) \(\forall x\in R,x>2\Rightarrow x^2>4\)

c) \(\forall x\in R,x^2>4\Rightarrow x>2\)

d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)

Cảm on nhiều ạ

Câu 3: 

a: Vì \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

nên P(x) luôn là mệnh đề đúng

b: \(\Leftrightarrow x< =\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< =0\)

\(\Leftrightarrow\sqrt{x}-1< =0\)

=>0<=x<=1

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x >  - 1\)

Sai, chẳng hạn với \(x =  - 2\) thì \({x^2} = 4 > 1\) nhưng \(x =  - 2 <  - 1\).

B. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > 1\)

Sai, chẳng hạn với \(x =  - 2\) thì \({x^2} = 4 > 1\) nhưng \(x =  - 2 < 1\).

C. \(\forall x \in \mathbb{R},x >  - 1 \Rightarrow {x^2} > 1\)

Sai, chẳng hạn với \(x = 0 >  - 1\) nhưng \({x^2} = 0 < 1\)

D. \(\forall x \in \mathbb{R},x > 1 \Rightarrow {x^2} > 1\)

Đúng.

Chọn đáp án D

24 tháng 9 2023

D

16 tháng 5 2017

a) Bình phương của mọi số thực đều nhỏ hơn hoặc bằng 0 (mệnh đề sai)

b) Có một số thực mà bình phương của nó nhỏ hơn hoặc bằng 0 (mệnh đề đúng)

c) Với mọi số thực \(x\) , \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)

d) Có một số thực \(x\), mà \(\dfrac{x^2-1}{x-1}=x+1\) (mênh đề đúng)

e) Với mọi số thực \(x\) , \(x^2+x+1>0\) (mệnh đề đúng)

f) Có một số thực \(x\)\(x^2+x+1>0\) (mệnh đề đúng)

9 tháng 9 2017

a) với mọi x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề sai)

b) một vài x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề đúng)

c) với mọi x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)

d) một vài x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề đúng)

e) với mọi x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)

f) một vài x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)

18 tháng 8 2020

thì phân tích thành nhân tử là oke

\(x^2+x+1>0\)

\(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)*đúng*

Ta có:\(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)

8 tháng 7 2019

\(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì (x+1/2)^2 \(\ge\)0 nên (x+1/2)^2 +3/4 >0

hk tốt 

tk đi

5 tháng 9 2020

E mới c2 nên cg ch am hiểu lắm nên thôi lm đại nhé:))

Ta có: \(x^2+xy+y^2=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\left(\forall x,y\right)\)

Vì nếu \(x=y=0\) => \(x^2+xy+y^2=0\)

=> Mệnh đề sai 

Chỉ đúng ở phần không âm

NV
1 tháng 7 2019

Bài 1:

a/ Với \(x=0\Rightarrow0-0+1>0\) đúng

Vậy mệnh đề đúng

Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)

Hoặc: \(∄x\in R,x^3-x^3+1>0\)

b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Vậy mệnh đề đã cho là đúng

Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Câu 2:

a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)

\(\Rightarrow\) Mệnh đề sai

b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)

\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)

Câu 3:

P là mệnh đề đúng

\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"

\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"

\(\overline{P}\) là mệnh đề sai

Chứng minh P đúng:

Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\)\(b\ne0\)

\(\Rightarrow2x=\frac{2a}{b}\)

Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ

b/ Mệnh đề đảo của P:

" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"

Chứng minh tương tự như trên

c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"

Bài 4:

a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)

b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)