Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)
Dấu "=" xảy ra khi và chỉ khi x = 3
Vậy Max Q = 10 khi và chỉ khi x = 3
1,A=(x2-6x+9)+2
=(x-3)2+2
ta thấy (x-3)2>=0 với mọi x
=>(x-3)2+2>=2 với mọi x
hay A>=2
dấu "="xảy ra x-3=0<=>x=3
vậy MinA=2 khi x=3
ý b sai đầu bài bạn nhé
C=-(x2-5x)
=-(x2-5x+25/4)+25/4
=-(x-5/2)2+25/4
ta thấy -(x-5/2)2<=0 với mọi x
=>-(x-5/2)2+25/4 <=25/4 với mọi x
hay C<=25/4
dấu "=" xảy ra khi x-5/2=0<=>x=5/2
vậy MaxC=25/4 khi x=5/2
k mk nha
\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)
\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)
\(8x^2+10x-3=0\)
\(8x^2-2x+12x-3=0\)
\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(2x+3\right)=0\)
\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)
\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)
\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)
\(\left(3x-1\right)\left(x-9\right)=0\)
\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)
a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4
Dấu bằng xảy ra <=>x+1=0 <=>x=-1
\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)
Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy giá trị nhỏ nhất của A là 4 khi x= -1
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
\(A=x^2-4xy+5y^2-6y+20=x^2-2.2xy+4y^2+y^2-2.3y+9-9+20=\left(x-2y\right)^2+\left(x-3\right)^2+11\ge11\)
\(\Rightarrow A_{min}=\frac{7}{4}\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2.3=6\\y=3\end{cases}}}\)
2 bài sau tương tự nếu ko biết nhna81 tin mình mình làm cho
T I C K cho mình nha mình cảm ơn
b) Sai đề minh sửu lại nha
\(\left(x^2+36y^2+12xy\right):\left(x+6y\right)\)
\(\Leftrightarrow\left(x+6y\right)^2:\left(x+6y\right)=x+6y\)
Tìm GTLN
\(P\left(x\right)=-2x^2+6x+2016=-2\left(x^2-3x+\frac{9}{4}\right)+\frac{4041}{2}=-2\left(x-\frac{3}{2}\right)^2+\frac{4041}{2}\)
Vì: \(-2\left(x-\frac{3}{2}\right)^2\le0\)
=> \(-2\left(x-\frac{3}{2}\right)^2+\frac{4041}{2}\le\frac{4041}{2}\)
Vậy GTLN của P(x) là \(\frac{4041}{2}\) khi \(x=\frac{3}{2}\)