Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{6x^2+15x-2x-5}{2x+5}=3x-1\)
b: \(=\dfrac{x^2\left(x+3\right)+\left(x-3\right)}{x-3}=x^2+1\)
c: \(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}=2x^2+x+1\)
\(a,\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\\ \Leftrightarrow\left(9x^2-16\right)-\left(4x^2+20x+25\right)=x^2-10x+25+4x^2+4x+1-x^2+2x+x^2-2x+1\\ \Leftrightarrow9x^2-16-4x^2-20x-25=5x^2-6x+27\\ \Leftrightarrow5x^2-20x-41=5x^2-5x+27\\ \Leftrightarrow-15x=68\\ \Leftrightarrow x=-\dfrac{68}{15}\)Vậy..
Câu sau cũng tương tự nhé
a) 2x(x-3)+5(x-3)=0
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)
x -1 2x -5x +x +3x-1 2 5 3 2 2x 3 2x -2x 5 3 -3x +x +3x-1 3 2 -3x -2 -3x +3x 3 2 -2x +3x-1 2 2 -2x +2 3x -3
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
\(\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(\frac{125x^3+1}{5x+1}=\frac{\left(5x\right)^3+1}{5x+1}=\frac{\left(5x+1\right)\left(25x^2-5x+1\right)}{5x+1}=25x^2-5x+1\)
\(\frac{2x^3+5x^2-2x+3}{2x^2-x+1}=\frac{\left(2x^3-x^2+x\right)+\left(6x^2-3x+3\right)}{2x^2-x+1}\)
\(=\frac{x\left(2x^2-x+1\right)+3.\left(2x^2-x+1\right)}{2x^2-x+1}=\frac{\left(2x^2-x+1\right)\left(x+3\right)}{2x^2-x+1}=x+3\)
Tham khảo nhé~
Hoàng Ngọc Anh đề là tìm x chứ ko phải tìm nghiệm, làm sao cho VP = 0 được!