Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
Bạn vào câu hỏi tương tự là có nha !
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
+ Với \(n=1\Rightarrow\left(7^n+1\right)\left(7^n+2\right)=8.9⋮3\)
+ Giả sử có \(A=\left(7^k+1\right)\left(7^k+2\right)=7^{2k}+3.7^k+2⋮3\) Ta cần c/m \(B=\left(7^{k+1}+1\right)\left(7^{k+1}+2\right)⋮3\)
Ta có
\(B=7^{2k+2}+3.7^{k+1}+2=7^2.7^{2k}+3.7.7^k+2\)
\(B=\left(7^{2k}+3.7^k+2\right)+48.7^{2k}+18.7^k=A+3\left(16.7^{2k}+6.7^k\right)\)
Ta có \(A⋮3;3\left(16.7^{2k}+6.7^k\right)⋮3\Rightarrow B⋮3\)
\(\Rightarrow\left(7^n+1\right)\left(7^n+2\right)⋮3\forall n\)
(Dùng phương pháp quy nạp)
a)A=(2+22)+(23+24)+...(29+210)
A=2(2+1)+23(1+2)+....+29(2+1)
A=3(2+23+25+27+29)
Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)
b)A=(2+22+23+24+25)+(26+27+28+29+210)
A=2(1+2+22+23+24)+26(1+2+22+23+24)
A=31(2+26) luon chia het cho 31 :))
\(M=3^1+3^3+....+3^{2015}\)
\(M=\left(3^1+3^3+3^5+3^7+3^9+3^{11}\right)+......+\left(3^{2005}+3^{2007}+3^{2009}+3^{2011}+3^{2013}+3^{2015}\right)\)
\(M=\left(3^1+3^3+3^5+3^7+3^9+3^{11}\right)+....+3^{2004}.\left(3^1+3^3+3^5+3^7+3^9+3^{11}\right)\)
\(M=199290+......+3^{2004}.199290\)
MÀ \(199290⋮70\)
\(\Rightarrow M=199290+.....+2^{2004}.199290⋮70\)
HAY \(M=3^1+3^3+......+3^{2015}⋮70\left(đpcm\right)\)
cảm ơn bn rất nhiều