K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

A=1x2+2x3+3x4+...+49x50

3A= 3(1.2+2.3+3.4+...+49.50)

3A= 1.2.3+2.3.3+3.4.3+...+49.50.3

3A= 1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+49.50.(51-48)

3A= 0.1.2-1.2.3+1.2.3-2.3.4+2.3.4-3.4.5+...+48.49.50-49.50.51

3A= 49.50.51

A= 49.50.51/3=41650

8 tháng 9 2016

B=1x3+3x5+5x7+...+99x101

B=1/1.3 +1/3.5 +...+1/99.101

2B=2/1.3 + 2/3.5 +...+2/99.101

2B=1-1/3+1/3-1/5+...+1/99-1/101

2B=1-1/101

2B=100/101

B=100/101:2=100/202

22 tháng 2 2020

ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương

5 tháng 8 2016

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)

\(=\frac{1}{1.2}-\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{56}\)

\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)

Dấu . là nhân nha

5 tháng 8 2016

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)

.......................................

\(\frac{2}{6.7.8}=\frac{1}{6.7}-\frac{1}{7.8}\)

S= \(\frac{1}{1.2}-\frac{1}{7.8}=\frac{27}{56}\)

19 tháng 8 2023

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\) 

 

 

19 tháng 8 2023

\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)

=\(\dfrac{5}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99+101}\right)\)

=\(\dfrac{5}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\) 

=\(\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{5}{2}-\dfrac{100}{101}\)

\(\dfrac{305}{202}\)