Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(A=\sqrt{\left(2+\sqrt{3}\right)\left(\sqrt{2+\sqrt{3}}+2\right)\left(-\sqrt{2+\sqrt{3}}+2\right)}\)
\(A=\sqrt{1}\)
\(A=1\)
b)\(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)
\(B=\frac{\sqrt{xy}}{\sqrt{xy}-y}x\sqrt{y}+\frac{\sqrt{x}}{\sqrt{xy}-y}y\sqrt{x}+\left(-\frac{\sqrt{y}}{\sqrt{xy}-x}\right)^2x\sqrt{y}+y\sqrt{x}\)
\(B=x\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{y}+y\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{x}+x\frac{\sqrt{x}}{\sqrt{xy}-x}\sqrt{y}-y\sqrt{x}\frac{\sqrt{y}}{\sqrt{xy}-y}\)
\(B=\frac{-x^{\frac{5}{2}}\sqrt{y}+\sqrt{x}.y^{\frac{5}{2}}}{\left(\sqrt{xy}-y\right)\left(\sqrt{xy}-x\right)}\)
\(B=\frac{\left(\sqrt{x}.y^{\frac{5}{2}}-x^{\frac{5}{2}}\sqrt{y}\right)\left(y+\sqrt{xy}\right)\left(x+\sqrt{xy}\right)}{\left(-y^2+xy\right)\left(-x^2+xy\right)}\)
c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)
\(C=14-6\sqrt{5}+\sqrt{6}-2\sqrt{5}\)
\(C=14-8\sqrt{5}+\sqrt{6}\)
\(C=\sqrt{14-8\sqrt{5}+\sqrt{6}}\)
\(=\left(\sqrt{5}-1\right)\left(6-2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}\)
\(=\left(6-2\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(6-2\sqrt{5}\right)\left(\sqrt{5}-1\right)^2\)
\(=\left(6-2\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)
\(=\left(6-2\sqrt{5}\right)^2=56-24\sqrt{5}\)
Có lẽ bạn viết nhầm đề, đề thế này mới hợp lý:
\(\left(\sqrt{10}-\sqrt{2}\right)\left(6+2\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(A=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\)
\(B=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{6}-\sqrt{2}\right)\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{a\left(\sqrt{a}-1\right)\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{6}-\sqrt{2}}{a+\sqrt{ab}}\)
\(a)A=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\\ =\sqrt{5}+3+\sqrt{3}-\left(\sqrt{5}+3\right)\\ =\sqrt{3}\)
\(b)B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)^2\\ =\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\\ =2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)\\ =2\left(25-21\right)=8\)