Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{5}{9}.\dfrac{10}{11}+\dfrac{5}{9}.\dfrac{14}{11}-\dfrac{5}{9}.\dfrac{15}{11}=\dfrac{5}{9}.\left(\dfrac{10}{11}+\dfrac{14}{11}-\dfrac{15}{11}\right)=\dfrac{5}{9}.\dfrac{9}{11}=\dfrac{5}{11}\)
b, \(\dfrac{6}{7}.\dfrac{8}{13}+\dfrac{6}{13}.\dfrac{9}{7}-\dfrac{3}{13}.\dfrac{6}{7}\)\(=\dfrac{6}{7}.\left(\dfrac{8}{13}-\dfrac{3}{13}\right)+\dfrac{6}{13}.\dfrac{9}{7}=\dfrac{6}{7}.\dfrac{5}{13}+\dfrac{54}{91}=\dfrac{30}{91}+\dfrac{54}{91}=\dfrac{84}{91}=\dfrac{12}{13}\)
Bạn ơi, gõ latex cho dễ nhìn nhé!
ta có \(\frac{\frac{4}{5}-\frac{4}{11}+\frac{4}{13}}{\frac{9}{5}-\frac{9}{11}+\frac{9}{13}}+\frac{\frac{5}{7}+\frac{5}{11}-\frac{5}{13}}{\frac{9}{7}+\frac{9}{11}-\frac{9}{13}}\)
\(=\frac{4\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{13}\right)}{9\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{5\left(\frac{1}{7}+\frac{1}{11}-\frac{1}{13}\right)}{9\left(\frac{1}{7}+\frac{1}{11}-\frac{1}{13}\right)}\)
\(=\frac{4}{9}+\frac{5}{9}=\frac{9}{9}=1\)
\(a,\frac{-1}{9}.\frac{15}{22}.\frac{-9}{25}\)
\(=\frac{-1.15.\left(-9\right)}{9.22.25}\)
\(=\frac{3}{110}\)
\(b,\frac{-2}{7}.\left(\frac{5}{13}-\frac{9}{15}\right)-\frac{2}{7}.\frac{8}{13}\)
\(=\frac{-2}{7}.\left(\frac{5}{13}+\frac{8}{13}-\frac{3}{5}\right)\)
\(=\frac{-2}{7}.\left(1-\frac{3}{5}\right)\)
\(=\frac{-2}{7}.\frac{2}{5}\)
\(=\frac{-4}{35}\)
\(c,\frac{3}{10}.\left(\frac{-4}{9}+\frac{2}{5}\right)-\frac{3}{10}.\left(\frac{5}{9}-\frac{3}{5}\right)\)
\(=\frac{3}{10}.\left[\left(\frac{-4}{9}+\frac{2}{5}\right)-\left(\frac{5}{9}-\frac{3}{5}\right)\right]\)
\(=\frac{3}{10}.\left(\frac{-4}{9}+\frac{2}{5}-\frac{5}{9}+\frac{3}{5}\right)\)
\(=\frac{3}{10}.\left[\left(\frac{-4}{9}-\frac{5}{9}\right)+\left(\frac{2}{5}+\frac{3}{5}\right)\right]\)
\(=\frac{3}{10}.\left(-1+1\right)\)
\(=\frac{3}{10}.0\)
\(=0\)
\(d,\frac{4}{11}-\frac{5}{13}+\frac{7}{11}-\frac{8}{13}\)
\(=\left(\frac{4}{11}+\frac{7}{11}\right)+\left(\frac{-5}{13}-\frac{8}{13}\right)\)
\(=1-1\)
\(=0\)
Học tốt
d)
đặt A = 1 + 2 + 22 + ... + 280
2A = 2 + 22 + 23 + ... + 281
2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )
A = 281 - 1 > 281 - 2
e)
đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}< 1\)
\(\Rightarrow A< 29\)
So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12
a: =-5/9-4/9+8/15+7/15-2/11=-2/11
b: =10/17+7/17-5/13-8/13+11/25
=11/25
c: =(9/12-2/12)*3/2=7/12*3/2=21/24=7/8
d: =(31/10-25/10)*3-2
=3/5*3-2
=9/5-2
=-1/5