Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a: Xét (O) có
ΔABK nội tiếp
AK là đường kính
Do đó: ΔABK vuông tại B
=>BK vuông góc với AB
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
=>AC vuông góc với CK
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: Vì BHCK là hình bình hành
nên BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
Xét ΔKAH có
KO/KA=KM/KH
nên OM//AH và OM/AH=KO/KA=1/2
=>OM=1/2AH
a: góc ABK=góc ACK=1/2*180=90 độ
=>BK//CH và BK//CH
=>BHCK là hình bình hành
b: góc BDC=góc BEC=90 độ
=>BCDE nội tiếp
c: kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc ADE
=>Ax//DE
=>DE vuông góc AK
a)Gọi I là trung điểm của tam giác BC
Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC
=>IE=ID=IB=IC
=> tứ giác BCDE nội tiếp. tâm đường tròn là I
b)AFK=90 ( dg cao thứ 3)
ACK=90 (chắn nữa dg tròn)
=>AFB=ACK
c)BD vg góc với AC
ACK=90 =>CK vg góc với AC
=>CK song song với BH
tuong tu CH song song voi BK
=>BHCK là hinh binh hanh
*vì I là trung điểm của BC
=>I cung la trung diem cua HK
=>H,I,K thang hang
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>B,F,E,C cùng thuộc một đường tròn
b: Xét (O) có
ΔABA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔABA' vuông tại B
=>BA'\(\perp\)AB
mà CH\(\perp\)AB
nên BA'//CH
Xét (O) có
ΔACA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔACA' vuông tại C
=>AC vuông góc CA'
mà BH vuông góc AC
nên BH//A'C
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
c/ Gọi K là giao điểm của AC và HM
Vì ACHM là hình bình hành nên HK = HM
Mà OB = OM
\(\Rightarrow\)OK là đường trung bình của \(\Delta BHM\)
\(\Rightarrow OK=\frac{BH}{2}\left(1\right)\)
Ta lại có: \(\widehat{AOC}=2\widehat{ABC}=2.60^o=120^o\) (vì cùng chắn cung AC)
Mà \(OK⊥AC\)(Vì OK // BH và \(BH⊥AC\))
\(\Rightarrow\widehat{AOK}=\frac{\widehat{AOC}}{2}=\frac{120^o}{2}=60^o\)
\(\Rightarrow\Delta AOK\) là nửa tam giác đều
\(\Rightarrow OK=\frac{AO}{2}=\frac{R}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BH=R=BO\)