K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

1. Theo mình là sai đề, không biết có phải vậy không

2. (x^2 - 2.x.5 + 25) + (9y^2 - 2.3.2 +4) =0

(x-5)^2 + (3y-2)^2 = 0

TH1: (x-5)^2 = 0

  x-5=0

x=5

TH2:  (3y-2)^2 =0

3y -2=0

y=2/3

16 tháng 6 2018

1. x2+y2-2x+4y+3=0

<=>(x2-2x+1)+(y2+4y+2)=0

<=>(x-1)2+(y+2)2=0

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

6 tháng 7 2021

b) 10x - x2 - 9y2 + 6y - 100 

= - (x2 - 10x + 25) - (9y2 - 6y + 1) -  74

= - (x - 5)2 - (3x - 1)2 - 74 \(\le-74< 0\)

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

5 tháng 10 2019

Một hình chữ nhật có chu vi gấp 6 lần chiều rộng biết chiều rộng bằng 4 tính diện tích hình chữ nhật các bạn lm từng bước một giúp mk nhé cảm ơn :)))))

a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)

\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0

Suy ra x=-1;y=-1/2

b.Ta có:\(x^2-6x+y^2-6y+21=3\)

\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0

Suy ra x=y=3

c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0

Suy ra x=y=4

6 tháng 8 2020

a) 2x2 - 4xy + 4y2 + 2x + 1 = 0

<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0

<=> ( x - 2y )2 + ( x + 1 )2 = 0

<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)

b) x2 - 6x + y2 - 6y + 21 = 3

<=> x2 - 6x + y2 - 6y + 21 - 3 = 0

<=> x2 - 6x + y2 - 6y + 18 = 0

<=> x2 - 6x + 9 + y2 - 6y + 9 = 0

<=> ( x - 3 )2 + ( y - 3 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

c) 2x2 - 8x + y2 - 2xy + 16 = 0

<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0

<=> ( x - y )2 + ( x - 4 )2 = 0

<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)

21 tháng 9 2018

\(A=2x^2+9y^2-6xy-6x-12y+2004\)

\(A=\left(3y\right)^2-2\cdot3y\cdot2+2^2+2x^2-6x+2000\)

\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2\right)+1997,75\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1997,75\)

\(A\ge1997,75\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}}\)

Vậy,.........

21 tháng 9 2018

Sửa cho Bonking ( bắt đầu dòng 3 )

\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)+2000\)

\(A=\left(3y-2\right)^2+2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+2000\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}+2000\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1995,5\)

\(A\ge1995,5\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)

Vậy,.........