Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y=-2
Áp dụng t/c dãy tỉ số = nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{3+4}=\frac{-2}{7}\)
Suy ra x=\(\frac{-6}{7}\)
y=\(\frac{-8}{7}\)
z= thay vào dãy tỉ số tính hok tốt
Bài 1 :
a. \(\left|x-\frac{1}{3}\right|< \frac{5}{2}\)
TH1 : nếu \(\left|x-\frac{1}{3}\right|>0\)
\(x-\frac{1}{3}< \frac{5}{3}\)
\(x< 2\)
TH2 : nếu \(\left|x-\frac{1}{3}\right|< 0\)
\(\frac{1}{3}-x< \frac{5}{3}\)
\(x>-\frac{4}{3}\)
Bài 2 :
a. \(\left(x-2\right)^2=1\)
\(\left(x-2\right)^2-1=0\)
\(\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\left(x-3\right)\left(x-1\right)=0\)
\(\left[\begin{array}{nghiempt}x-3=0\\x-1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)
A B C M K E H 1 2 3 1 1 2 1 2 3
Do ΔABC cân nên AM vừa là đường trung tuyến vừa là đường trung trực với cạnh BC
=> ΔAMB và ΔAMC vuông cân và bằng nhau
=> Góc C1= Góc A1
Xét ΔABH và ΔCAK có
BA=AC( ΔABC cân)
Góc B1=Góc A3 ( cùng phụ với góc BAK)
Đều _|_ AK
=> ΔCAK=ΔABH ( cạnh huyền góc nhọn)
=> Góc BAK = Góc CAK
Mà Góc C1= Góc A1
=> Góc A2= Góc C2
Xét 2 ΔAHM và ΔCKM có
AM=MC ( đường trung tuyến ứng với cạnh huyền)
Góc A2= Góc C2 (cmt)
AH=CK (vì ΔCAK=ΔABH)
=> ΔAHM = ΔCKM (c.g.c)
=>HM=MK=> ΔMHK cân tại M (1)
Ta lại có Góc M1= Góc M2
mà Góc M1+góc M3=90o
=> Góc M2+ Góc M3 = Góc HMK =90o (2)
Từ (1) Và (2) => ΔMHK vuông cân tại M
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà => Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà => Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ; => Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân
\(b.\)
\(27< 81^5:3^n< 387420489\)
\(\Rightarrow3^3< 3^{20}:3^n< 3^{18}\)
\(\Rightarrow n=\left\{16;15;14;13;12;11;10;9;8;7;6;5;4;3\right\}\)
Vậy : \(n=\left\{16;15;14;13;12;11;10;9;8;7;6;5;4;3\right\}\)
\(a.\)
\(4< 2^n< 32768.2^{-5}\)
\(\Rightarrow2^2< 2^n< 2^{10}\)
\(\Rightarrow2< n< 10\)
\(\Rightarrow n\in\left\{3;4;5;6;7;8;9\right\}\)
Vậy : \(n\in\left\{3;4;5;6;7;8;9\right\}\)
b)
a=3n+1+3n-1=3n(3+1)-1=3n*4-1
Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}
=>{3n*4}E{2;8;15;29;36;...}
=>3nE{9;...} => nE{3;...}
b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1
Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}
=>{3N*5}E{0;6;13;27;34;...}
=>3NE{0;...}
=>NE{0;...}
=>đpcm(cj ko chắc cách cm này)
Bài 1 :
Ta có :
\(\left(x-1\right)^6=\left(x-1\right)^8\)
\(\Leftrightarrow\)\(x-1=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(1-x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)
Bài 1 :
a) x < 0
b) x > 0
c) <=> 3 + |3x - 1| = 5
<=> |3x - 1| = 5 - 3 = 2
<=> 3x - 1 = 2 hoặc -3x + 1 = 2
<=> 3 x = 3 hoặc -3x = 1
<=> x = 1 hoặc x = -1/3
Bài 2 :
a) 27 = 33 < 3n < 243 = 35
<=> 3 < n < 5
Vì n thuộc N* nên n thuộc {4; 5}
b) 32 = 25 < 2n < 128 = 27
<=> 5 < n < 7. Vì n thuộc N* nên n = 6
c) 125 = 5 . 25 = 5 . 52 < 5.5n < 5 . 125 = 5 . 53
<=> 2 < n < 3. Vì n thuộc N* nên n = 3