Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
a2+b2+c2+42 = 2a+8b+10c
<=> a2-2a+1+b2 -8b+16+c2-10c+25=0
<=> (a-1)2+(b-4)2+(c-5)2=0
<=>a=1 và b=4 và c=5
=> a+b+c = 10
ta có 2(a2+b2)=5ab
<=> 2a2+2b2-5ab=0
<=> 2a2-4ab-ab+2b2=0
<=> 2a(a-2b)-b(a-2b)=0
<=> (a-2b)(2a-b)=0
<=> a=2b(thỏa mãn)
hoặc b=2a( loại vì a>b)
với a=2b =>P=5b/5b=1
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)
Thay 1 vào x, ta có
f(x) =14+12+a=0
2+a=0 suy ra a=-2
câu 14 : chọn đáp án \(B\) vì \(\left|\overrightarrow{b}\right|=\sqrt{\left(1\right)^2+\left(-1\right)^2}=\sqrt{2}\ne0\)
câu 18 : ta có tọa độ trọng tâm \(G\) của tam giác \(ABC\)
là \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_G=\dfrac{2+3-7}{3}\\y_G=\dfrac{1-1+3}{3}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_G=\dfrac{-2}{3}\\y_G=1\end{matrix}\right.\)
vậy tọa độ trọng tâm \(G\) là \(G\left(\dfrac{-2}{3};1\right)\) \(\Rightarrow\) chọn đáp án \(B\)
câu 19 : đặt tọa độ của điểm \(D\) là \(D\left(x_D;y_D\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-7\right)\\\overrightarrow{DC}=\left(4-x_D;3-y_D\right)\end{matrix}\right.\)
ta có \(ABCD\) là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\Leftrightarrow\left\{{}\begin{matrix}1=4-x_D\\-7=3-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=3\\y_D=10\end{matrix}\right.\)
vậy tọa độ điểm \(D\) là \(D\left(3;10\right)\) \(\Rightarrow\) chọn đáp án \(A\)
Bài 6:
a. Sai. Vì $x^2=\frac{1}{3}\Leftrightarrow x=\pm \sqrt{\frac{1}{3}}$ là số vô tỉ.
Mệnh đề phủ định: $\forall x\in\mathbb{Q}, 9x^2-3\neq 0$
b. Sai. Cho $n=0$ thấy $n^2+1=1$ không chia hết cho $8$
Mệnh đề phủ định: $\exists x\in\mathbb{N}| n^2+1\not\vdots 8$
c. Sai. Cho $x=1$ thấy sai.
Phủ định: \(\exists c\in\mathbb{R}| (x-1)^2=x-1\)
d. Sai, cho $n=0$ thấy sai.
Phủ định: $\exists n\in\mathbb{N}| n^2\leq n$
Bài 4:
a.
$x^2-5x+4=0$
$\Leftrightarrow (x-1)(x-4)=0$
$\Leftrightarrow x=1$ hoặc $x=4$
b.
$x^2-5x+6=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x=2$ hoặc $x=3$
c.
$x^2-3x>0$
$\Leftrightarrow x(x-3)>0$
$\Leftrightarrow x>3$ hoặc $x< 0$
d. ĐK $x\geq 0$
$\sqrt{x}=x$
$\Leftrightarrow \sqrt{x}(\sqrt{x}-1)=0$
$\Leftrightarrow x=0$ hoặc $x=1$
e.
$2x+3\leq 7$
$\Leftrightarrow 2x\leq 4$
$\Leftrightarrow x\leq 2$
f.
$x^2+x+1>0$
$\Leftrightarrow (x+\frac{1}{2})^2+\frac{3}{4}>0$
$\Leftrightarrow x\in\mathbb{R}$